

Anpassung VU B-Planverfahren Einkaufsquartier südlich der Ludwigsstraße (A262)

Mainz

Anpassung VU B-Planverfahren Einkaufsquartier südlich der Ludwigsstraße (A262)

Mainz

31. Juli 2023

Auftraggeber

Boulevard LU GmbH & Co. KG Ansprechpartner: Lars Heimann Rheinstraße 194 b 55218 Ingelheim am Rhein Telefon: 06132 9955-677

Telefax: 06132 99 55-90

lars.heimann@molitor-immobilien.de

Auftragnehmer

R+T Verkehrsplanung GmbH Julius-Reiber-Straße 17 64293 Darmstadt Telefon: 06151 / 2712 0

Telefax: 06151 / 2712 0 Telefax: 06151 / 2712 20 darmstadt@rt-verkehr.de

www.rt-verkehr.de

Bearbeitung durch:

Ralf Huber-Erler, Dr.-Ing. Jenny Büttner, M.Eng.

Hinweis:

In allen von R+T verfassten Texten wird aus Gründen der besseren Lesbarkeit auf eine geschlechtsspezifische Unterscheidung verzichtet. Es sind stets alle Menschen jeden Geschlechts gleichermaßen gemeint.

Alle Inhalte dieses Berichts, insbesondere Texte, Fotografien und Grafiken, sind urheberrechtlich geschützt. Das Urheberrecht liegt, soweit nicht ausdrücklich anders gekennzeichnet, bei R+T Verkehrsplanung GmbH.

<u>Inhalt</u>

Inhalt

1	Aufo	gabe und Vorgehensweise	1		
2	Verkehrliche Untersuchung der Bestandssituation				
	2.1	Lage / Verkehrserschließung	3		
	2.2	Kfz-Verkehrsmengen Bestand	3		
3	Verkehrsprognose				
	3.1	Verkehrsaufkommen Prognose-Nullfall 2030	5		
	3.2	Verkehrsaufkommen des Untersuchungsgebietes	5		
	3.3	Verkehrsverteilung	8		
	3.4	Prognoseverkehrsmenge im Untersuchungsgebiet	11		
4	Leistungsfähigkeitsuntersuchung				
	4.1	Leistungsfähigkeit Bestand	12		
	4.2	Leistungsfähigkeit Prognose-Planfall	16		
	4.3	Gegenüberstellung der Qualitätsstufen	20		
5		nungskonzeption zur Verbesserung der Erschließung Bliliengasse	von der 21		
6	Aus	fahrt Lieferverkehr über die Eppichmauergasse	24		
7	Zusa	ammenfassung und Fazit	25		
Ver	zeichni	isse	27		

Aufgabe und Vorgehensweise

Aufgabe

In Mainz soll der Bebauungsplan "Einkaufsquartier südlich der Ludwigsstraße (A262)" aufgestellt werden. Es sollen somit die planungsrechtlichen Voraussetzungen für eine Neustrukturierung des Bereiches südlich der Ludwigsstraße im Hinblick auf die Entwicklung eines Einkaufsquartiers geschaffen werden.

Im Rahmen dessen soll das ehemalige Karstadt-Areal an der Ludwigstraße umgenutzt und umgebaut werden. Außerdem ist vorgesehen, den benachbarten Gebäudekomplex an der Fuststraße zurückzubauen und durch einen Neubau zu ersetzen. Der Bebauungsplan sieht außerdem eine mögliche Aufstockung der benachbarten Pavillons (WMF und Leuchter) vor. Im Ergebnis soll ein Einkaufsquartier entstehen, das ein Angebot an vielfältigen Nutzungen, wie Einkauf, Gastronomie, Kultur, Hotel und Wohnungen ermöglicht. Das bestehende Parkhaus am Karstadt-Areal soll verkleinert und als Tiefgarage umgebaut werden, wodurch anstelle der 460 noch 300 Pkw-Stellplätze zur Verfügung stehen.

Mit dem hier vorliegenden Verkehrsgutachten, das den Bebauungsplan begleitet, wird geklärt, inwieweit nach Umsetzung der Planung eine gesicherte Erschließung gewährleistet werden kann. Es wird dargestellt, welche verkehrliche Situation im Bestand vorliegt und welche verkehrlichen Auswirkungen durch die Umsetzung des Bebauungsplans zu erwarten sind. Der Anschluss des Plangebietes an das öffentliche Straßennetz wird überprüft. Darüber hinaus dienen die im Gutachten ermittelten Kfz-Verkehrsmengen als Eingangsgrößen für das Schallgutachten.

Ein weiterer Teil des Gutachtens befasst sich mit der Umgestaltung der Weißliliengasse im Bereich der Ein- und Ausfahrt der geplanten Tiefgarage.

Vorgehensweise

Im Vorfeld der Bearbeitung wurde die Methodik der Untersuchung mit der Stadtverwaltung Mainz abgestimmt.

Als Grundlage für das Verkehrsgutachten wurden Zählungsdaten an den relevanten Knotenpunkten im umliegenden Straßennetz von der Stadtverwaltung zur Verfügung gestellt und aufbereitet. Das Kfz-Verkehrsaufkommen der geplanten Nutzungen und die zu erwartenden Verkehrszunahmen im umliegenden Straßennetz wurden prognostiziert und auf das umliegende Verkehrsnetz umgelegt. Durch einen Vergleich der Knotenleistungsfähigkeit im Prognoseplanfall mit der Knotenleistungsfähigkeit im Prognosenullfall wurde geprüft, ob ggfls. vorhandene Probleme auf die neu entstehenden Verkehre zurückzuführen sind oder ggfs. schon ohnehin bestehen. Dabei wurde auch die

Anbindung der Tiefgarage des Plangebietes an das öffentliche Straßennetz überprüft.

Für den Bereich der Weißliliengasse mit der Anbindung der Tiefgarage wurde eine Umgestaltungslösung entwickelt, die den verkehrlichen und städtebaulichen Anforderungen besser genügt als die vorhandene Situation.

Tomorium on ontorous namy don Dootandoondad.on

2 Verkehrliche Untersuchung der Bestandssituation

2.1 Lage / Verkehrserschließung

Das Untersuchungsgebiet befindet sich zentral in der Altstadt von Mainz und wird durch die Weißliliengasse, die Ludwigsstraße, die Eppichmauergasse und den Gutenbergplatz begrenzt, wie **Abbildung 1** zeigt. Die Ein- und Ausfahrt der geplanten Tiefgarage soll zukünftig, wie auch bisher, an die Weißliliengasse angeschlossen werden. Die Abwicklung des Lieferverkehrs der jeweiligen Nutzungen findet über die Weißliliengasse, die Ludwigsstraße, die Fuststraße und die Eppichmauergasse statt. Die Anbindung des Untersuchungsgebietes an das regionale Straßennetz in westliche Richtung erfolgt im Anschluss an die Große Langgasse über die Große Bleiche und im weiteren Verlauf über die Saarstraße an die A60 bzw. über die Pariser Straße an die A63. In östliche Richtung wird der Standort im Anschluss an die Große Langgasse und die Große Bleiche über die Rheinstraße bzw. Theodor-Heuss-Brücke an die B455 und daran anschließend an die A66 angeschlossen.

Abbildung 1: Übersicht Umgriff Untersuchungsgebiet

2.2 Kfz-Verkehrsmengen Bestand

Aktuelle Erhebungen im motorisierten Individualverkehr (MIV) sind angesichts der durch die Pandemie bedingten Rückgänge im Verkehrsaufkommen des MIV nicht aussagekräftig. Daher wurden die zur Beschreibung der heutigen Verkehrssituation erforderlichen Daten von der Stadtverwaltung Mainz in

Form von Zählungsdaten, die aus den Jahren 2018-2020 stammen, zur Verfügung gestellt.

Die Verkehrsmengen wurden für die folgenden Knotenpunkte zur Verfügung gestellt:

- K1: Große Langgasse / Ludwigsstr. / Weißlillengasse
- K2: Umbach / Große Bleiche / Gärtnergasse
- K3: Große Bleiche / Bauhofstr. / Flachsmarktstr.
- K4: Rheinstr. / Holzhofstr.
- K5: Holzhofstr. / Windmühlenstr.

Die Verkehrsmengen von und zur Eppichmauergasse an K6 (Weißliliengasse/ Eppichmauergasse) wurden hingegen am 02.05.2023 vor Ort gezählt und übernommen.

Die zur Verfügung gestellten Zählungen sowie die Zählungen vor Ort zeigen die zeitliche und räumliche Verteilung der Verkehrsmengen im Bestand. In **Plan 1.1** sind die Kfz-Verkehrsmengen der Spitzenstunde vormittags und nachmittags zusammengefasst. Für K1 wird ebenso die maßgebliche mittägliche Spitzenstunde dargestellt. **Plan 1.2** gibt zusätzlich die hochgerechnete durchschnittliche werktägliche Verkehrsmenge (DTV) am direkt zum Untersuchungsgebiet benachbarten Knotenpunkt K1 an.¹ Neben den DTV-Werten sind dort die stündliche Verkehrsstärke (M) sowie die Lkw-Anteile (p) angegeben, welche die schalltechnischen Untersuchungen als Eingangswerte benötigen.

Die heutige Verkehrsmenge in der Weißliliengasse liegt nördlich der Ein- und Ausfahrt des Parkhauses bei einer Querschnittsverkehrsmenge zur vormittäglichen Spitzenstunde von 460 Kfz/h und zur nachmittäglichen Spitzenstunde 622 Kfz/h nördlich der Ein-/Ausfahrt. Der Schwerverkehrsanteil liegt auf der Weißliliengasse zwischen 2 und 3 Prozent. Da es sich bei der Ludwigsstraße um eine Fußgängerzone handelt, die Montag bis Freitag nur von 6:00 bis 11:00 Uhr und von 18:30 bis 19:30 Uhr für Lieferverkehr freigegeben ist und vom Buslinienverkehr befahren wird, ist hier der Schwerverkehrsanteil mit bis zu 28 Prozent deutlich höher.

Hier wurde bewusst nicht der DTVw angesetzt, da es sich um Eingangswerte für die Lärmbetrachtungen handelt

3 Verkehrsprognose

3.1 Verkehrsaufkommen Prognose-Nullfall 2030

Der Prognose-Nullfall beinhaltet die Verkehrsinfrastruktur des Prognosejahres 2030 sowie die entsprechende Verkehrsnachfrage – jedoch ohne den Neuverkehr durch das Plangebiet. Die Stadtverwaltung Mainz geht für die Innenstadt auf Grundlage von (Langzeit-) Verkehrszählungen an Dauerzählstellen von einem allgemein rückläufigen Kfz-Verkehrsaufkommen aus. Für den Prognose-Nullfall wird daher kein steigendes Verkehrsaufkommen zu Grunde gelegt. Als Grundverkehrsmenge werden für die Verkehrsuntersuchung somit die heutigen Verkehrsmengen angesetzt. Die Verkehrsmengen des Bestandes entsprechen den Verkehrsmengen des Prognose-Nullfalls (siehe **Plan 1.1** und **Plan 1.2**).

3.2 Verkehrsaufkommen des Untersuchungsgebietes

Zur Ermittlung der verkehrlichen Auswirkungen der vorgesehenen Nutzungen des Untersuchungsgebietes auf das umliegende Straßennetz ist es erforderlich, den zukünftigen Kfz-Neuverkehr (Zu- und Abfluss) in Stärke und Richtung abzuschätzen. Dies geschieht sowohl für den gesamten Tagesverkehr als auch für die Spitzenstunden am Vormittag, Mittag und Nachmittag. Die prognostizierten Kfz-Verkehrsmengen dienen als Grundlage für die anschließende Leistungsfähigkeitsüberprüfung und als Eingangswerte für die schalltechnischen Untersuchungen.

Da im Rahmen der Umnutzung und Umgestaltung des Karstadt-Areals neben Nutzungen, die neu entstehen, bisher bestehende Nutzungen (deren induzierter Verkehr in den vorliegenden Verkehrszählungen enthalten ist) entfallen, wird außerdem ermittelt, welche Kfz-Verkehrsmenge durch die Umsetzung des Plangebietes zunächst entfällt. Außerdem wird zur Erfassung des Gesamtverkehrs des Untersuchungsgebietes aus bestehenden und neuen Nutzungen die induzierte Kfz-Verkehrsmenge der bisher und auch weiterhin bestehenden Nutzungen ermittelt.

In **Tabelle 1** sind alle Nutzungen aufgelistet, die bei der Verkehrsuntersuchung berücksichtigt werden. Sie unterteilen sich in neue Nutzungen, bestehende Nutzungen und entfallende Nutzungen. Für den Leuchter und WMF-Pavillon ist eine Aufstockung um jeweils ein Stockwerk nach Bebauungsplan möglich. Da derzeit keine konkrete Planung dazu vorliegt, wurden als Nutzung Büroflächen für diese Stockwerke angesetzt, weil diese als realistische mögliche Nutzung für die Obergeschosse angesehen werden.

Das Kfz-Verkehrsaufkommen wurde entsprechend dieser Kenndaten prognostiziert.

	BGF	VKF / NGF/ Zimmer / Plätze
Neue Nutzungen		•
Karstadt		
Handel (Warenhaus)	7.078 m ²	6.000 m ²
Gastronomie (3. OG)	768 m²	600 m²-
Vollsortimenter	2.149 m ²	1.300 m²
Hotel (ohne Gastronomie)	8.810 m ²	194 Zimmer
Restaurant und Bar im Hotel	686 m²	300 m ²
Fuststraße		
Wohnen	-	10 WE
Handel (kleinflächiger EZH)	1.975 m²	1.020 m²
Kultur	2.340 m ²	721 Plätze
Büro	525 m²	245 m²
WMF Pavillon (Gutenbergplatz 1)		·
Büro	300 m²	-
Leuchter Pavillon (Gutenbergplatz 2)		·
Büro	800 m²	-
Bestehende Nutzungen		
Weißliliengasse		
Deutsche Bank	5.419 m ²	-
Büro (bei EG Dt. Bank)	475 m²	-
AllDent Zahnarzt	1.402 m ²	-
Leuchter Pavillon		
Handel (kleinfl.)	200 m²	140 m²
Gastronomie	600 m ²	-
Fuststraße 4		·
Handel (kleinfl.)	300 m²	240 m²
Büro	1.170 m ²	-
Gutenbergplatz 1		·
Handel (kleinfl.)	300 m²	240 m²
Praxis	600 m ²	-
Wohnen	-	1 WE
Gutenbergplatz 3-5		
Gastronomie	1.949 m²	-
Büro	1.275 m²	-
Bestand entfällt		
Karstadt		
Handel (Warenhaus)	11.450 m²	4.400 m²
Wohn-/Geschäftsgebäude Fuststaße		
Handel (kleinfl.)	112 m²	90 m²
Wohnen	-	14 WE
Kulturgebäude Fuststraße		
Kultur	200 m²	-

Tabelle 1: Kenngrößen zu den Nutzungen des Untersuchungsgebietes

Verkehrsprognose

Die Ermittlung des induzierten Kfz-Verkehrs wird in enger Anlehnung an die Fachliteratur vorgenommen, die als Basis herangezogen wird ²⁺³. Mithilfe von Erfahrungswerten aus vergleichbaren Vorhaben und den erhobenen Verkehrsmengen werden die Ergebnisse auf Plausibilität geprüft. Für die Berechnung des induzierten Verkehrs durch das Plangebiet werden die Beschäftigtenverkehre, Kundenverkehre, Bewohnerverkehre, Besucherverkehre sowie Wirtschaftsverkehre anhand einzelner Nutzungsansprüche und Kenngrößen unterschieden und anschließend das Gesamtverkehrsaufkommen ermittelt.

Maßgeblich für die Leistungsfähigkeitsbeurteilung sind die vormittägliche, mittägliche und nachmittägliche Spitzenstunde. Das Kfz-Verkehrsaufkommen der geplanten Nutzungen während der Spitzenstunden wird aus normierten Tagesganglinien⁴⁺⁵ gemäß Regelwerk abgeleitet und anhand vergleichbarer Nutzungen auf Plausibilität geprüft. Unter Verwendung dieser Anteile ergibt sich in den Spitzenstunden das Verkehrsaufkommen in **Tabelle 2**, induziert durch das Plangebiet.

	Ta	ag	SpHVo	rmittag	SpHM	Mittag	SpHNac	hmittag
	Ziel- verkehr	Quell- verkehr	Ziel- verkehr	Quell- verkehr	Ziel- verkehr	Quell- verkehr	Ziel- verkehr	Quell- verkehr
Bestand verbleibend	1.257	1.257	95	7	194	183	80	134
Bestand entfällt	606	606	55	9	49	49	53	62
Neuverkehr	1.656	1.656	104	34	103	104	126	135
Neuverkehr – Bestand ent- fällt	1.050	1.050	49	25	54	55	73	73

Tabelle 2: Kfz-Verkehrsaufkommen durch das Untersuchungsgebiet

Die neuen Nutzungen induzieren demnach werktäglich ca. 3.312 Fahrten/24h (1.656 Quell- und 1.656 Zielfahrten) und es entfallen ca. 1.210 Fahrten/24h (606 Quell- und 606 Zielfahrten), durch Nutzungen, die bisher bestanden und in der Planung nicht mehr vorgesehen sind. In Summe ergibt sich daraus ein

7

² Forschungsgesellschaft für Straßen- und Verkehrswesen (FGSV): Hinweise zur Schätzung des Verkehrsaufkommens von Gebietstypen. Köln 2006.

³ Hessisches Landesamt für Straßen- und Verkehrswesen: Integration von Verkehrsplanung und räumlicher Planung – Grundsätze und Umsetzung, Abschätzung und Verkehrserzeugung (Heft 42). Wiesbaden 2000.

⁴ Forschungsgesellschaft für Straßen- und Verkehrswesen (FGSV): Hinweise zur Schätzung des Verkehrsaufkommens von Gebietstypen. Köln 2006.

⁵ INFAS - Institut für angewandte Sozialwissenschaft GmbH: Mobilität in Deutschland 2008 (beauftragt vom Bundesministerium für Verkehr, Bau und Stadtentwicklung). Bonn 2009.

Verkehrsprognose

absoluter Neuverkehr von werktäglich ca. 2.100 Kfz-Fahrten (1.050 Quellund 1.050 Zielfahrten). Die Nutzungen, die im Plangebiet bereits bestehen und weiterhin verbleiben, induzieren werktäglich ca. 2.510 Fahrten/24h (1.255 Quell- und 1.255 Zielfahrten).

Die detaillierte Herleitung der Verkehrserzeugung befindet sich in Anlage 1.

3.3 Verkehrsverteilung

Für den prognostizierten Kfz-Neuverkehr wird die Verkehrsverteilung für die künftige Situation an den relevanten Knotenpunkten prognostiziert. Zuvor ist zu berücksichtigen, dass im Rahmen des Plangebietes Nutzungen entfallen. Daher wird der erzeugte Verkehr der entfallenden Nutzungen zunächst vom Neuverkehr abgezogen (siehe **Kapitel 3.2**). Dieser Vorgehensweise liegt die Annahme zugrunde, dass sich der Kfz-Verkehr zu und von den entfallenden Nutzungen erwartungsgemäß gleichermaßen auf das Verkehrsnetz verteilt hat, wie sich der Neuverkehr verteilen wird.

Für die Verteilung der Kfz-Verkehrsmengen (Neuverkehr abzüglich des Verkehrs der Nutzungen die entfallen) auf das umliegende Verkehrsnetz werden folgende Annahmen berücksichtigt:

- Der Kfz-Verkehr zum Untersuchungsgebiet verteilt sich auf die 5 Hauptverkehrsachsen um das Plangebiet. Zur Ermittlung dieser Verteilung wurden Querschnittsverkehrsmengen der Stadt an den genannten Straßen ausgewertet und gegenübergestellt. Somit entsteht 25 Prozent des Neuverkehrs von/ zur Theodor-Heuss-Brücke, 15 Prozent von/ zur Rheinstraße, 25 Prozent von/ zur Pariser Straße, 20 Prozent von/ zur Saarstraße und 15 Prozent von/ zur Rheinallee.
- Aus der Summe der Verteilung aus den 5 Hauptachsen ergibt sich die Verkehrsverteilung an Anschluss A1
- Der Pkw-Verkehr des Untersuchungsgebietes verteilt sich neben den der Tiefgarage im Untersuchungsgebiet auch auf andere umliegende Parkhäuser. Bei der Untersuchung miteinbezogen werden die Parkhäuser Schillerplatz, Römerpassage, Galeria Kaufhof, Kronberger Hof, Theater, Am Brandt, Rathaus, Römisches Theater und Cinestar. Methodisch wurde so vorgegangen, dass Parkverkehre bei Vollauslastung der Tiefgarage an der Weißliliengasse auf die übrigen Parkhäuser verteilt wurden.
- Der gesamte Lieferverkehr des Plangebietes fährt am Knotenpunkt Weißliliengasse / Ludwigsstraße nach Osten in die Ludwigsstraße und liefert über die Fuststraße an. Die Ausfahrt des Lieferverkehrs findet von der Eppichmauergasse in südliche Richtung statt.

Die Verteilung des Quell- und Zielverkehrs (Pkw - ohne Lieferverkehr) des Untersuchungsgebietes ist in **Abbildung 2** und **Abbildung 3** dargestellt.

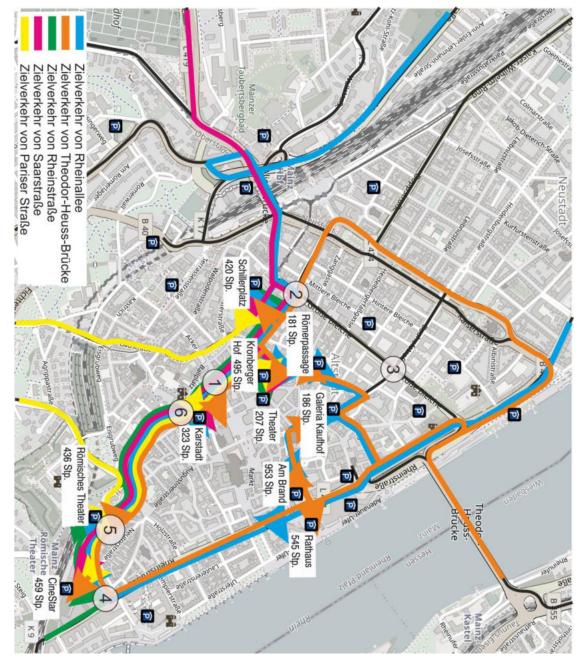


Abbildung 2: Verteilung Quell- und Zielverkehr des Untersuchungsgebietes im umliegenden Verkehrsnetz (1/2)

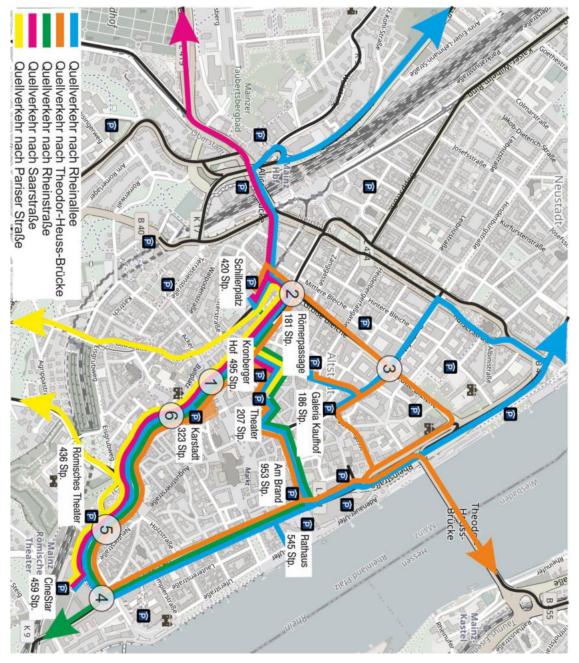


Abbildung 3: Verteilung Quell- und Zielverkehr des Untersuchungsgebietes im umliegenden Verkehrsnetz (2/2)

3.4 Prognoseverkehrsmenge im Untersuchungsgebiet

Das zusätzliche Verkehrsaufkommen der neuen Nutzungen wird mit der heutigen Verkehrsmenge des Bestands (= Prognose-Nullfall) überlagert. Durch die Überlagerung wird die Prognoseverkehrsmenge für das umgebende Straßennetz ermittelt. Da für den Anschluss A1 keine bestehende Verkehrsmenge vorliegt und somit der Prognose-Verkehr nicht darauf überlagert werden konnte, wurde der Quell- und Zielverkehr zur Tiefgarage in den Spitzenstunden (Summe aus ermittelter bestehender Verkehrsmenge des Plangebietes und ermittelter Neuverkehr) über eine abgeleitete Ganglinie zur Tiefgarage ermittelt. Die Ganglinie setzt sich zusammen aus verschiedenen allgemeinen Ganglinien zu den vorgesehenen Nutzungen.

Die aufgrund der überbauten Flächen des Untersuchungsgebietes entstehenden Kfz-Verkehrsmengen an den relevanten Knotenpunkten sind für die beiden Spitzenstunden in **Plan 2.1** dargestellt. **Plan 2.2** gibt zusätzlich die hochgerechnete durchschnittliche werktägliche Verkehrsmenge (DTV) am Knotenpunkt K1 an. Neben den DTV-Werten sind dort die stündliche Verkehrsstärke (M) sowie die Lkw-Anteile (p) angegeben, welche die schalltechnischen Untersuchungen als Eingangswerte benötigen.

In der Weißliliengasse und der Großen Langgasse erhöht sich die Kfz-Verkehrsmenge durch das Plangebiet werktäglich somit um etwa 10 Prozent im Vergleich zu den Verkehrsmengen im Bestand. In der östlichen Ludwigsstraße erhöht sich die Verkehrsmenge um etwa 2,5 Prozent. In der westlichen Ludwigsstraße wird keine Erhöhung der Verkehrsmenge erwartet.

4 Leistungsfähigkeitsuntersuchung

Nachdem der Kfz-Neuverkehr in seiner Stärke und Richtung für den Prognose-Planfall ermittelt wurde, wird für den fließenden Kfz-Verkehr die Verkehrsqualität an den maßgeblichen Knotenpunkten untersucht. Es wird überprüft, ob das bisher bestehende sowie zusätzliche Verkehrsaufkommen an den umliegenden Knotenpunkten leistungsfähig abgewickelt werden kann und die Erschließung des Gewerbestandortes somit gesichert ist oder ob gegebenenfalls Ertüchtigungen erforderlich werden.

Basis der Berechnung und Beurteilung der Leistungsfähigkeiten ist das Handbuch für die Bemessung von Straßenverkehrsanlagen (HBS)⁶. Die abschließende Bewertung erfolgt durch die Einteilung in Verkehrsqualitätsstufen, abhängig von der mittleren Wartezeit. Im HBS werden dafür sechs verschiedene **Qualitätsstufen des Verkehrsablaufs** (QSV) definiert. Stufe A stellt die

_

⁶ Forschungsgesellschaft für Straßen- und Verkehrswesen (FGSV) (Hrsg.): Handbuch für die Bemessung von Straßenverkehrsanlagen (HBS) – Teil S Stadtstraßen. Köln 2015.

beste Qualität dar und Stufe F die schlechteste. Angestrebt wird im Allgemeinen mindestens eine QSV D – in diesem Verkehrszustand entstehen kurze Rückstaus, die sich jedoch auch innerhalb der Spitzenstunde immer wieder abbauen. Außerhalb der Spitzenstunde stellt sich in der Regel ein besserer Verkehrsablauf ein.

4.1 Leistungsfähigkeit Bestand

Die Leistungsfähigkeitsnachweise des Bestands (=Prognose-Nullfall) sind in **Anlage 2** dargestellt. In **Plan 3.1** sind die zum Bestand bzw. Prognose-Nullfall ermittelten Qualitätsstufen dargestellt.

K1 – Große Langgasse / Ludwigsstr. / Weißliliengasse

Eine Übersicht der Fahrstreifen des Knotenpunkts K1 (Große Langgasse / Ludwigsstr. / Weißliliengasse) ist in **Anlage 2.1** dargestellt. Der lichtsignalgeregelte Knotenpunkt K1 weist im Bestand zur vormittäglichen Spitzenstunde mit QSV B der Verkehrsströme aus der Ludwigsstraße eine gute Verkehrsqualität auf. Die übrigen Ströme am Knotenpunkt K1 verfügen rechnerisch über die nochmals bessere Qualitätsstufe QSV A (Anlage 2.2). Zur mittäglichen Spitzenstunde (Anlage 2.3) stellt sich die Verkehrssituation am Knotenpunkt K1 ebenso wie zur nachmittäglichen Spitzenstunde (Anlage 2.4) gleichwertig zur vormittäglichen Spitzenstunde dar, es wird QSV B im ungünstigen Verkehrsstrom erreicht.⁷ Zur nachmittäglichen Spitzenstunde ergibt sich im Vergleich zur vormittäglichen und mittäglichen Spitzenstunde für den westlichen Verkehrsstrom aus der Ludwigsstraße überdies QSV A, was sich auf die längere Umlaufzeit zur nachmittäglichen Spitzenstunde zurückführen lässt. Da die Busse auf der Ludwigsstraße bevorrechtigt sind, kann dies zu Minderungen der Leistungsfähigkeit führen. Es wurde daher die Qualitätsstufe für die Verkehrsströme auf der Weißliliengasse und auf der Großen Langgasse mit QSV B angesetzt.

Die rechnerisch maximale Rückstaulänge bei Rotende vom Knotenpunkt K1 in die Ludwigsstraße beträgt etwa 25 m (SpHMittag) in die westliche Ludwigsstraße und etwa 30 m (SpHMittag, SpHPM) in die östliche Ludwigsstraße. Da die nächsten Zufahrten in der Ludwigsstraße sowohl westlich als auch östlich des Knotenpunktes mehr als 70 m entfernt liegen, ist nicht zu erwarten, dass diese durch Rückstau negativ beeinflusst werden. In der Weißliliengasse südlich des Knotenpunktes K1 liegt die geplante Ein-/ Ausfahrt zur Tiefgarage etwa 110 m entfernt und wird somit durch die rechnerisch maximale Rückstaulänge von etwa 50 m (SpHPM) nicht negativ beeinflusst. Nördlich des

⁷ Zur Überprüfung des Knotenpunktes zur mittäglichen Spitzenstunde wurde das Signalprogramm des Vormittags zugrunde gelegt

Knotenpunktes K1 ergibt sich rechnerisch eine maximale Rückstaulänge von 55 m (SpHPM). Die etwa 40 m vom Knotenpunkt K1 entfernte Zufahrt von der Inselstraße liegt innerhalb dieser Strecke, wodurch für Kfz, die aus der untergeordneten Inselstraße ausfahren, zur nachmittäglichen Spitzenstunde mit einzelnen Behinderungen zu rechnen ist. Zur vormittäglichen und mittäglichen Spitzenstunde ergibt sich rechnerisch ein maximaler Rückstau von etwa 40 m durch welchen diese Zufahrt nur bedingt beeinflusst wird. Insgesamt ist festzustellen, dass die Überprüfung der Leistungsfähigkeit mit den Festzeitprogrammen der Lichtsignalanlagen durchgeführt wurde. Die Signalisierung an Knotenpunkt K1 vor Ort ist dagegen über eine verkehrsabhängige Steuerung geregelt, was den Verkehrsablauf weiter positiv beeinflusst.

K2 – Umbach / Große Bleiche / Gärtnergasse

Eine Übersicht der Signalgeber und Fahrstreifen des Knotenpunkts K2 (Umbach / Große Bleiche / Gärtnergasse) ist in **Anlage 2.5** dargestellt. Der lichtsignalgeregelte Knotenpunkt K2 erreicht im Bestand zur vormittäglichen Spitzenstunde mit QSV B eine gute Verkehrsqualität (**Anlage 2.6**). In der nachmittäglichen Spitzenstunde ergeben die Berechnungen eine befriedigende Verkehrsqualitätsstufe von QSV C (**Anlage 2.7**). Maßgeblich hierfür ist der Verkehrsstrom aus der Gärtnergasse. Die übrigen Verkehrsströme weisen auch hier eine gute Verkehrsqualitätsstufe von QSV B auf.

In der vormittäglichen Spitzenstunde bildet sich rechnerisch vom Knotenpunkt K2 in westliche Richtung auf der Großen Bleiche ein maximaler Rückstau von bis zu etwa 60 m und zur nachmittäglichen Spitzenstunde von bis zu etwa 75 m. Daraus ist zu schließen, dass bereits im Bestand Wechselwirkungen zwischen K2 und dem westlich benachbarten, etwa 45 m entfernten Knotenpunkt Münsterplatz / Binger Str. / Schillerstraße / Große Bleiche vorliegen. Vor Ort sind die beiden Knotenpunkte miteinander koordiniert, wodurch Rückstauereignisse weitestgehend vermieden werden sollten. Am nördlichen Knotenpunktarm kann rechnerisch ein Rückstau von bis zu etwa 50 m in der nachmittäglichen Spitzenstunde entstehen, wodurch der Rückstau leicht in den etwa 45 m benachbarten vorfahrtsgeregelten Knotenpunkt Gärtnergasse / Mittlere Bleiche reicht. Zur vormittäglichen Spitzenstunde ist der errechnete maximale Rückstau am nördlichen Knotenpunktarm nur 40 m lang und beeinflusst den benachbarten Knotenpunkt nicht. Die maximal errechnete Rückstaulänge vom Knotenpunkt K2 am östlichen Knotenpunktarm (Große Bleiche) von etwa 55 m sowie am südlichen Knotenpunktarm (Umbach) von etwa 35 m liegt innerhalb der jeweils zur Verfügung stehenden Fläche bis zu den dort benachbarten Knotenpunkten.

K3 – Große Bleiche – Bauhofstraße / Flachsmarktstraße

Eine Übersicht der Signalgeber und Fahrstreifen des Knotenpunkts K3 (Große Bleiche – Bauhofstraße / Flachsmarktstraße) ist in Anlage 2.8 dargestellt. Im Bestand weist der signalisierte Knotenpunkt zur vormittäglichen Spitzenstunde mit QSV C eine befriedigende Verkehrsqualität auf (Anlage 2.9). Die Verkehrssituation mit dem bestehenden Signalprogramm würde sich zur nachmittäglichen Spitzenstunde mit QSV E und somit nicht mehr ausreichend darstellen (Anlage 2.10). Die Anlage wäre somit überlastet. Dies ist sowohl auf den linksabbiegenden Verkehrsstrom aus der Flachsmarktstraße als auch auf den geradeausfahrenden sowie rechtsabbiegenden Verkehrsstrom von der Großen Bleiche (Ost) zurückzuführen. Die übrigen Ströme erreichen Qualitätsstufen zwischen QSV D und QSV B. Erhält der linksabbiegende Verkehrsstrom aus der Flachsmarktstraße als auch der rechtsabbiegende Verkehrsstrom von der Großen Bleiche (Ost) eine um 1s verlängerte Freigabezeit, wird eine QSV D erreicht (Anlage 2.11). Dafür würde die Freigabezeit des Verkehrsstroms aus der Bauhofstraße um 2s verkürzt werden. Insgesamt ist festzustellen, dass die Überprüfung der Leistungsfähigkeit mit den Festzeitprogrammen der Lichtsignalanlagen durchgeführt wurde.

In südliche Richtung bildet sich rechnerisch vom Knotenpunkt K3 auf der Flachsmarktstraße ein Rückstau von maximal etwa 75 m zur nachmittäglichen Spitzenstunde und somit über den nächstgelegenen 65 m entfernten und vorfahrtsgeregelten Knotenpunkt (Flachsmarktstr. / Petersstr. / Margaretenstr.) mit der Flachsmarktstraße als übergeordnete Straße. An den übrigen Knotenpunktarmen ergibt sich sowohl zur vormittäglichen als auch zur nachmittäglichen Spitzenstunde rechnerisch keine oder nur eine geringe Beeinflussung der benachbarten Knotenpunkte.

K4 – Rheinstraße / Holzhofstraße

Eine Übersicht der Signalgeber und Fahrstreifen des Knotenpunkts K4 (Rheinstraße / Holzhofstraße) ist in Anlage 2.12 dargestellt. Zur vormittäglichen Spitzenstunde weist der Knotenpunkt K4 (Rheinstraße / Holzhofstraße) im Bestand mit QSV D eine ausreichende Verkehrsqualität auf (Anlage 2.13). Maßgeblich hierfür ist der linksabbiegende Verkehrsstrom von der südlichen Rheinstraße aus fahrend. Zur nachmittäglichen Spitzenstunde ist der Knotenpunkt K4 bereits im Bestand mit QSV F rechnerisch nicht leistungsfähig (Anlage 2.14). Es wird eine um 4s längere Freigabezeit für den linksabbiegenden Verkehrsstrom von der südlichen Rheinstraße notwendig. Hierfür wird der von der nördlichen Rheinstraße aus fahrende Verkehrsstrom um 2s verkürzt. Mit den leicht angepassten Freigabezeiten des Signalprogramms erreicht K4 auch zur nachmittäglichen Spitzenstunde mit QSV D eine ausreichende Verkehrsqualität (Anlage 2.15).

In nördliche Richtung des K4 befindet sich nach ca. 20 m eine signalisierte Kreuzung, die das dort anliegende Parkhaus anschließt. Aufgrund von

fehlenden Verkehrsmengen an diesem Anschluss, wurde dieser signalisierte Knotenpunkt für die Untersuchung nicht miteinbezogen. Rechnerisch reicht die maximal auftretenden Rückstaulänge von etwa 80 m zur vormittäglichen Spitzenstunde und von etwa 150 m zur nachmittäglichen Spitzenstunde bis über diesen Knotenpunkt. Ebenso verläuft der rechnerisch maximale Rückstau in der Holzhofstraße mit etwa 80 m zur vormittäglichen und etwa 110 m zur nachmittäglichen Spitzenstunde bis bzw. über den etwa 80 m entfernten Nachbarknotenpunkt Holzhofstr. / Neutorstr. In südliche Richtung reicht die Abwicklungslänge dagegen mit etwa 190 m aus um den maximal errechneten Rückstau von etwa 110 m zur vormittäglichen Spitzenstunde und etwa 100 m zur nachmittäglichen Spitzenstunde abzuwickeln.

K5 – Holzhofstraße / Windmühlenstraße

Eine Übersicht der Signalgeber und Fahrstreifen des Knotenpunkts K5 (Holzhofstraße / Windmühlenstraße) ist in **Anlage 2.16** dargestellt. Der lichtsignalgeregelte Knotenpunkt K5 weist im Bestand zur vormittäglichen Spitzenstunde mit QSV B eine gute Verkehrsqualität auf (**Anlage 2.17**). Zur nachmittäglichen Spitzenstunde (**Anlage 2.18**) stellt sich die Verkehrsqualität gleichwertig dar, es wird QSV B im ungünstigen Strom erreicht. Es ergibt sich im Vergleich zur vormittäglichen für den westlichen rechtsabbiegenden Verkehrsstrom aus der Windmühlenstraße überdies QSV A, was sich auf die längere Umlaufzeit zur nachmittäglichen Spitzenstunde zurückführen lässt.

Die errechneten maximalen Rückstaulängen liegen an allen Knotenpunktarmen sowohl zur vormittäglichen als auch zur nachmittäglichen Spitzenstunde innerhalb des abwickelbaren Bereichs. Die unmittelbar etwa 10 m vom K5 entfernte signalisierte Ein- und Ausfahrt liegt dagegen innerhalb des maximalen Rückstaus von etwa 35 m zur vormittäglichen Spitzenstunde und von etwa 55 m zur nachmittäglichen Spitzenstunde.

K6 – Weißliliengasse / Eppichmauergasse

Eine Übersicht der Signalgeber und Fahrstreifen des Knotenpunkts K6 (Weißliliengasse / Eppichmauergasse) ist in **Anlage 2.19** dargestellt. Der lichtsignalgeregelte Knotenpunkt K6⁸ weist im Bestand zur vormittäglichen Spitzenstunde mit QSV B eine gute Verkehrsqualität auf (**Anlage 2.20**). Zur nachmittäglichen Spitzenstunde (**Anlage 2.21**) stellt sich die Verkehrsqualität gleichwertig dar, es wird QSV B im ungünstigen Strom erreicht.

Die ermittelten Rückstaulängen von ca. 60 m in nördliche Richtung (Weißliliengasse), ca. 10 m in westliche Richtung (Eppichmauergasse) und ca. 55 m

_

⁸ Die westliche Eppichmauergasse ist dabei mit einer deutlich untergeordneten Verkehrsmenge (ca. 10 Kfz-Zufahrten jeweils in der vormittäglichen und nachmittäglichen Spitzenstunde) nicht signalisiert.

in südliche Richtung stellen für signalisierte anschließende Knotenpunkte aufgrund der weit größeren zur Verfügung stehenden Entfernung keine Beeinträchtigung dar.

4.2 Leistungsfähigkeit Prognose-Planfall

Für die Verkehrsmengen des Prognose-Planfalls wurde ebenso wie für den Bestand (=Prognose-Nullfall) die Leistungsfähigkeit der Knotenpunkte 1 bis 5 sowie des Anschlusses A1 (Ein-/Ausfahrt Tiefgarage BLU) überprüft. Die Leistungsfähigkeitsnachweise des Prognose-Planfalls sind in **Anlage 3** dargestellt. In **Plan 3.2** sind die zum Prognose-Planfall ermittelten Qualitätsstufen dargestellt.

K1 – Große Langgasse / Ludwigsstr. / Weißliliengasse

Im Prognose-Planfall weist der Knotenpunkt K1 (Große Langgasse / Ludwigsstr. / Weißlilliengasse), wie bereits im Bestand, zur vormittäglichen Spitzenstunde mit QSV B der Verkehrsströme aus der Ludwigsstraße eine gute Verkehrsqualität auf. Die übrigen Ströme am Knotenpunkt K1 verfügen über die nochmals bessere Qualitätsstufe QSV A (Anlage 3.1). Zur mittäglichen Spitzenstunde (Anlage 3.2) stellt sich die Verkehrssituation am Knotenpunkt K1 ebenso wie zur nachmittäglichen Spitzenstunde (Anlage 3.3) gleichwertig dar, es wird QSV B im ungünstigen Verkehrsstrom erreicht. ⁹ Zur nachmittäglichen Spitzenstunde ergibt sich im Vergleich zur vormittäglichen und mittäglichen Spitzenstunde für den westlichen Verkehrsstrom aus der Ludwigsstraße überdies QSV A. Im Gegensatz zum Bestand erreicht der Verkehrsstrom aus der Weißliliengasse eine gute Verkehrsgualität QSV B anstelle QSV A. Da die Busse auf der Ludwigsstraße bevorrechtigt sind, kann dies zu Minderungen der Leistungsfähigkeit führen. Es wurde daher die Qualitätsstufe für die Verkehrsströme auf der Weißliliengasse und auf der Großen Langgasse mit QSV B angesetzt.

Die rechnerisch maximale Rückstaulänge bei Rotende vom Knotenpunkt K1 in die Ludwigsstraße beträgt wie bereits im Bestand etwa 25 m (SpHMittag) in die westliche Ludwigsstraße und etwa 30 m (SpHMittag, SpHPM) in die östliche Ludwigsstraße. Somit ist ebenso nicht zu erwarten, dass diese durch Rückstau negativ beeinflusst werden. In der Weißliliengasse südlich des Knotenpunktes K1 liegt die geplante Ein-/ Ausfahrt zur Tiefgarage etwa 110 m vom Knotenpunkt entfernt und wird durch die rechnerisch maximale Rückstaulänge von etwa 55 m (SpHPM) nicht negativ beeinflusst. Nördlich des Knotenpunktes K1 ergibt sich rechnerisch eine maximale Rückstaulänge von

⁹ Zur Überprüfung des Knotenpunktes zur mittäglichen Spitzenstunde wurde das Signalprogramm des Vormittags zugrunde gelegt

60 m (SpHPM). Die etwa 40 m vom Knotenpunkt K1 entfernte Zufahrt von der Inselstraße liegt wie auch im Bestand innerhalb dieser Strecke, wodurch für Kfz, die aus der untergeordneten Inselstraße ausfahren, zur nachmittäglichen Spitzenstunde mit einzelnen Behinderungen zu rechnen ist. Zur vormittäglichen und mittäglichen Spitzenstunde ergibt sich rechnerisch ein maximaler Rückstau von etwa 45 m durch welchen diese Zufahrt bedingt beeinflusst wird. Hier ist wie bei der Überprüfung der Verkehrsmengen am K1 im Bestand festzustellen, dass die Überprüfung der Leistungsfähigkeit mit den Festzeitprogrammen der Lichtsignalanlagen durchgeführt wurde. Die Signalisierung an K1 vor Ort ist dagegen über eine verkehrsabhängige Steuerung geregelt, was den Verkehrsablauf positiv beeinflusst.

K2 – Umbach / Große Bleiche / Gärtnergasse

Der lichtsignalgeregelte Knotenpunkt K2 erreicht im Prognose-Planfall, wie bereits im Bestand, zur vormittäglichen Spitzenstunde mit QSV B eine gute Verkehrsqualität (**Anlage 3.4**). In der nachmittäglichen Spitzenstunde ergeben die Berechnungen im Prognose-Planfall, wie auch im Bestand eine befriedigende Verkehrsqualitätsstufe von QSV C (**Anlage 3.5**). Maßgeblich hierfür ist der Verkehrsstrom aus der Gärtnergasse. Die übrigen Verkehrsströme weisen auch hier eine gute Verkehrsqualitätsstufe von QSV B auf.

In der vormittäglichen Spitzenstunde bildet sich rechnerisch vom Knotenpunkt K2 in westliche Richtung auf der Großen Bleiche ein maximaler Rückstau von bis zu etwa 60 m und zur nachmittäglichen Spitzenstunde von bis zu etwa 75 m. Daraus ist zu schließen, dass Wechselwirkungen zwischen K2 und dem benachbarten etwa 45 m entfernten Knotenpunkt Münsterplatz / Binger Str. / Schillerstraße / Große Bleiche vorliegen, wie sie bereits im Bestand augenscheinlich waren. Vor Ort sind die beiden Knotenpunkte miteinander koordiniert, wodurch Rückstauereignisse weitestgehend vermieden werden sollten. Am nördlichen Knotenpunktarm stellt sich die Situation ebenso wie im Bestand dar und es kann rechnerisch ein Rückstau von bis zu etwa 50 m in der nachmittäglichen Spitzenstunde entstehen, wodurch der Rückstau leicht in den etwa 45 m entfernten benachbarten vorfahrtsgeregelten Knotenpunkt Gärtnerasse / Mittlere Bleiche reicht. Zur vormittäglichen Spitzenstunde ist der errechnete maximale Rückstau am nördlichen Knotenpunktarm nur 40 m lang und beeinflusst den benachbarten Knotenpunkt somit nur gering. Die maximal errechnete Rückstaulänge vom Knotenpunkt K2 am östlichen Knotenpunktarm (Große Bleiche) von etwa 55 m sowie am südlichen Knotenpunktarm (Umbach) von etwa 35 m liegt innerhalb der jeweils zur Verfügung stehenden Fläche bis zu den dort benachbarten Knotenpunkten.

K3 – Große Bleiche – Bauhofstraße / Flachsmarktstraße

Im Prognose-Planfall weist der signalisierte Knotenpunkt analog zum Bestand zur vormittäglichen Spitzenstunde mit QSV C eine befriedigende Verkehrsqualität auf (Anlage 3.6). Die Verkehrssituation mit dem bestehenden Signalprogramm würde sich zur nachmittäglichen Spitzenstunde ebenso analog zum Bestand mit QSV E und somit nicht mehr als ausreichend darstellen (Anlage 3.7). Die Anlage wäre somit überlastet. Dies ist sowohl auf den linksabbiegenden Verkehrsstrom aus der Flachsmarktstraße als auch auf den geradeausfahrenden sowie rechtsabbiegenden Verkehrsstrom von der Großen Bleiche (Ost) zurückzuführen. Die übrigen Ströme erreichen Qualitätsstufen zwischen QSV D und QSV B. Wird das Signalprogramm wie im Bestand angepasst und der linksabbiegende Verkehrsstrom aus der Flachsmarktstraße als auch der rechtsabbiegende Verkehrsstrom von der Großen Bleiche (Ost) erhalten eine 1s längerer Freigabezeit, wird eine QSV D erreicht (Anlage 3.8). Dafür würde die Freigabezeit des Verkehrsstroms aus der Bauhofstraße um 2s verkürzt werden. Insgesamt ist festzustellen, dass die Überprüfung der Leistungsfähigkeit mit den Festzeitprogrammen der Lichtsignalanlagen durchgeführt wurde.

Der maximal ermittelte Rückstau stellt sich wie im Bestand dar: In südliche Richtung auf der Flachsmarktstraße bildet sich rechnerisch vom Knotenpunkt K3 ein Rückstau von maximal etwa 79 m zur nachmittäglichen Spitzenstunde. Dieser Rückstau reicht somit über den nächstgelegenen 65 m entfernten, vorfahrtsgeregelten Knotenpunkt (Flachsmarktstr. / Petersstr. / Margaretenstr.). An den übrigen Knotenpunktarmen ergibt sich sowohl zur vormittäglichen als auch zur nachmittäglichen Spitzenstunde rechnerisch keine oder nur eine geringe Beeinflussung der benachbarten Knotenpunkte.

K4 – Rheinstraße / Holzhofstraße

Zur vormittäglichen Spitzenstunde weist der Knotenpunkt K4 (Rheinstraße / Holzhofstraße) im Prognose-Planfall wie bereits im Bestand mit QSV D eine ausreichende Verkehrsqualität auf (Anlage 3.9). Maßgeblich hierfür ist der linksabbiegende Verkehrsstrom von der südlichen Rheinstraße aus fahrend. Zur nachmittäglichen Spitzenstunde ist der Knotenpunkt K4 wie bereits im Bestand mit QSV F rechnerisch nicht leistungsfähig (Anlage 3.10). Es wird eine um 5s längere Freigabezeit für den linksabbiegenden Verkehrsstrom von der südlichen Rheinstraße sowie eine 2s längere Freigabezeit für den rechtsabbiegenden Strom aus der Holzhofstraße notwendig. Hierfür wird der Verkehrsstrom von der nördlichen Rheinstraße aus fahrend um 3s verkürzt. Mit den leicht angepassten Freigabezeiten des Signalprogramms erreicht K4 auch zur nachmittäglichen Spitzenstunde mit QSV D eine ausreichende Verkehrsqualität (Anlage 3.11).

In nördliche Richtung des K4 befindet sich nach ca. 20 m eine signalisierte Kreuzung, die das dort anliegende Parkhaus anschließt. Aufgrund von

fehlenden Verkehrsmengen an diesem Anschluss, wurde dieser signalisierte Knotenpunkt für die Untersuchung nicht miteinbezogen. Rechnerisch liegt dieser Knotenpunkt aufgrund der maximal auftretenden Rückstaulänge von etwa 85 m zur vormittäglichen Spitzenstunde und von etwa 160 m zur nachmittäglichen Spitzenstunde wie bereits im Bestand im Rückstau des nördlichen Knotenpunktarm. Ebenso verläuft der rechnerisch maximale Rückstau in der Holzhofstraße mit etwa 85 m zur vormittäglichen und etwa 105 m zur nachmittäglichen Spitzenstunde bis bzw. über den etwa 80 m entfernten Nachbarknotenpunkt Holzhofstr. / Neutorstr. In südliche Richtung reicht die Abwicklungslänge dagegen mit etwa 190 m aus um den maximal errechneten Rückstau von etwa 110 m zur vormittäglichen Spitzenstunde und etwa 100 m zur nachmittäglichen Spitzenstunde abzuwickeln.

K5 – Holzhofstraße / Windmühlenstraße

Der lichtsignalgeregelte Knotenpunkt K5 weist im Prognose-Planfall, wie bereits im Bestand, zur vormittäglichen Spitzenstunde mit QSV B eine gute Verkehrsqualität auf (**Anlage 3.12**). Zur nachmittäglichen Spitzenstunde (**Anlage 3.13**) stellt sich die Verkehrsqualität gleichwertig dar, es wird QSV B im ungünstigen Strom erreicht. Es ergibt sich im Vergleich zur vormittäglichen für den westlichen rechtsabbiegenden Verkehrsstrom aus der Windmühlenstraße überdies QSV A, was sich auf die längere Umlaufzeit zur nachmittäglichen Spitzenstunde zurückführen lässt.

Die errechneten maximalen Rückstaulängen können von allen benachbarten Knotenpunkten sowohl zur vormittäglichen als auch zur nachmittäglichen Spitzenstunde abgewickelt werden. Die unmittelbar etwa 10 m vom K5 entfernte signalisierte Ein- und Ausfahrt liegt jedoch innerhalb des maximal errechneten Rückstaus von etwa 35 m zur vormittäglichen Spitzenstunde und von etwa 65 m zur nachmittäglichen Spitzenstunde.

K6 - Weißliliengasse / Eppichmauergasse

Der lichtsignalgeregelte Knotenpunkt K6¹⁰ weist in der Planung ebenso wie im Bestand zur vormittäglichen Spitzenstunde mit QSV B eine gute Verkehrsqualität auf (**Anlage 3.14**). Zur nachmittäglichen Spitzenstunde (**Anlage 3.15**) stellt sich die Verkehrsqualität gleichwertig dar, es wird QSV B im ungünstigen Strom erreicht.

Die ermittelten Rückstaulängen von ca. 60 m in nördliche Richtung (Weißlilengasse), ca. 10 m in westliche Richtung (Eppichmauergasse) und ca. 60 m in südliche Richtung stellen für signalisierte anschließende Knotenpunkte

¹⁰ Die westliche Eppichmauergasse ist dabei mit einer deutlich untergeordneten Verkehrsmenge (ca. 10 Kfz-Zufahrten jeweils in der vormittäglichen und nachmittäglichen Spitzenstunde) nicht signalisiert.

aufgrund der weit größeren zur Verfügung stehenden Entfernung keine Beeinträchtigung dar.

In **Kapitel 6** wird die Situation in der Eppichmauergasse mit der Ausfahrt der Anlieferung und der Zu- und Ausfahrt der Polizei genauer betrachtet und Möglichkeiten zur Optimierung vorgestellt.

Anschluss A1 – Ein-/Ausfahrt Tiefgarage BLU

Der Anschluss A1 zur Tiefgarage des Plangebietes soll nach derzeitigem Stand vorfahrtsgeregelt abgewickelt werden, mit der Weißliliengasse als übergeordnete Straße. Eine Übersicht des Anschlusses ist in **Anlage 3.16** dargestellt. Er weist zur vormittäglichen Spitzenstunde mit QSV A eine sehr gute Qualität des Verkehrsablaufs auf (**Anlage 3.17**). Auch zur nachmittäglichen Spitzenstunde weist der Anschluss mit QSV B eine gute Verkehrsqualität auf (**Anlage 3.18**).

4.3 Gegenüberstellung der Qualitätsstufen

In **Tabelle 3** ist eine Gegenüberstellung der Qualitätsstufen des Verkehrsablaufs der Knotenpunkte dargestellt.

		Bestand (ohne Anpassung)	Bestand (mit Anpassung)	Prognose-Planfall (ohne Anpassung)	PrognosePlanfall (mit Anpassung)
	SpHVormittag	В	-	В	-
K1	SpHMittag	В	-	В	
	SpHNachmittag	В	-	В	-
K2	SpHVormittag	В	-	В	-
KZ	SpHNachmittag	С	-	С	-
К3	SpHVormittag	С	-	С	-
KJ	SpHNachmittag	Е	D	Е	D
K4	SpHVormittag	D	-	D	-
IX-4	SpHNachmittag	F	D	F	D
K5	SpHVormittag	В	-	В	-
KJ	SpHNachmittag	В	-	В	-
K6	SpHVormittag	В		В	
KO	SpHNachmittag	В		В	
A1	SpHVormittag	-	-	А	-
Ai	SpHNachmittag	-	-	В	-

Tabelle 3: Übersicht der Qualitätsstufen der Knotenpunkte

Die Übersicht zeigt, dass notwendige Anpassungen, um die Kfz-Verkehrsmengen abzuwickeln, bereits im Bestand (= Prognose-Nullfall) an den Knotenpunkten K3 und K4 erforderlich werden. Es handelt sich dabei lediglich um geringfügige Anpassungen am Festzeitprogramm.

Insgesamt ist festzustellen, dass die Überprüfung der Leistungsfähigkeit mit den Festzeitprogrammen der Lichtsignalanlagen durchgeführt wurde. Die Signalisierung der Knotenpunkte K1, K3 und K4 vor Ort ist dagegen über eine verkehrsabhängige Steuerung geregelt, was den Verkehrsablauf noch einmal positiv beeinflusst.

Der Anschluss A1 ist als vorfahrtsgeregelter Knotenpunkt problemlos herzustellen.

5 Planungskonzeption zur Verbesserung der Erschließung von der Weißliliengasse

Im Zusammenhang mit den Überlegungen zur Umgestaltung bzw. Umnutzung des Karstadt-Areals wurde auch das verkehrliche Konzept der Weißliliengasse überdacht und die Anbindung der Tiefgarage an die Weißliliengasse neu entwickelt.

Die aktuelle verkehrliche Ordnung des Verkehrsraums der Weißliliengasse ist im Bestandsausbau aufgrund der Überschneidung verschiedener Anforderungen im Kfz-, Bus-, Fuß- und Radverkehr unübersichtlich und weist somit ein mögliches Verkehrssicherheitsproblem für alle Verkehrsteilnehmer auf. Vor diesem Hintergrund wurden mehrere verkehrliche Konzeptvarianten entwickelt, die den Anforderungen an einen funktional optimierten und sicheren Verkehrsablauf Rechnung tragen.

Die Entwicklung der Konzeptvarianten erfolgte unter Berücksichtigung der vorhandenen Querschnittsbreiten und der technischen Regelwerke. Um die unübersichtliche verkehrliche Situation zu ordnen, wurden zusätzliche Rahmenbedingungen festgelegt:

- Verlegung der Tiefgaragenausfahrt zur Tiefgarageneinfahrt (Realisierung ggfls. durch Entfall oder Versatz der vorhandenen Arkadenstützen)
- Verlegung des Radverkehrs im östlichen Bereich vor die Arkaden

Falls möglich, sollten auch die folgenden Anforderungen erfüllt werden:

- Verlegung des Fußverkehrs im östlichen Bereich vor die Arkaden
- Busvorfahrt (Reisebusse) Hotel in Weißliliengasse

In einer Vorgängeruntersuchung wurden dazu verschiedene Varianten entwickelt und mittels Mikrosimulation auf ihre Leistungsfähigkeit untersucht.

Nach einer Gegenüberstellung bzw. Weiterentwicklung der Varianten und einer Abstimmung mit der Stadtverwaltung Mainz stellte sich die folgende Variante als Vorzugsvariante heraus:

Vorzugsvariante - Gestaltungsprinzip "Große Langgasse"

Bei der Vorzugsvariante (siehe **Plan 4**) wird das Gestaltungsprinzip der großen Langgasse aufgegriffen. Dabei ist ein Kfz-Fahrsteifen pro Richtung vorgesehen, welche durch einen gepflasterten Mehrzweckstreifen getrennt sind. Im Bereich der Großen Langgasse wird dieser Trennstreifen als durchgängige Querungshilfe für den Fußverkehr genutzt, siehe **Abbildung 4**.

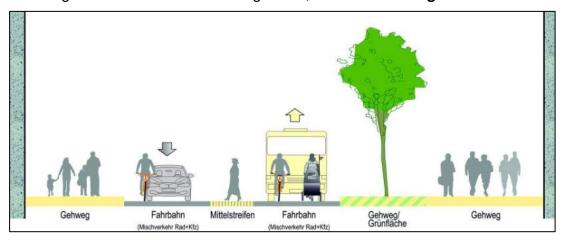


Abbildung 4: Querschnitt für oberen Bereich Weißliliengasse

Da der Querungsbedarf in diesem Bereich begrenzt ist, kann der Streifen bspw. als Aufstellfläche für die Linksabbieger genutzt werden siehe **Abbildung 5**.

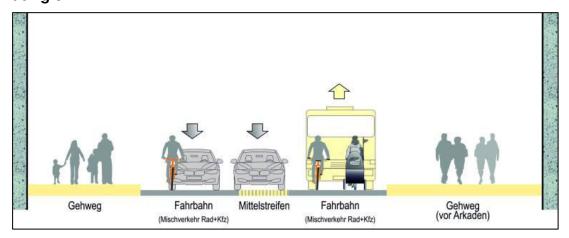


Abbildung 5: Querschnitt für mittleren Bereich der Weißliliengasse vor Ein-/Ausfahrt zur Tiefgarage

Es werden keine gesonderten Radverkehrsanlagen zur Verfügung gestellt. Diese sollen gemeinsam mit dem Kfz-Verkehr im Straßenraum geführt werden, was aufgrund der reduzierten Geschwindigkeit (Tempo 30) mit den vorhandenen Verkehrsmengen vertretbar ist.

Der Busverkehr soll durch eine Busschleuse am Knotenpunkt Eppichmauergasse / Weißliliengasse Vorrang vor dem Kfz-Verkehr (und dem Radverkehr) erhalten. Zudem wurde am Knotenpunkt Weißliliengasse / Ludwigsstraße ein separater kurzer Fahrstreifen für die Busse berücksichtigt.

Durch den stark verringerten Straßenraum (für den Kfz-Verkehr), ergeben sich weitere Gestaltungspotenziale im Seitenraum. So ist bei dieser Variante die Führung des Fußverkehrs außerhalb der Arkaden möglich. Auch für eine entsprechende Grüngestaltung mit Baumpflanzungen und die Busvorfahrt des Hotels bleibt ausreichend Gestaltungsraum zur Verfügung.

Mit dieser Variante kann ein guter Verkehrsablauf erreicht werden. Durch die Verlegung des Gehweges vor die Arkaden verbessern sich zudem die Sichtverhältnisse bei der Tiefgaragenausfahrt, was neben der Übersichtlichkeit auch gleichzeitig die Verkehrssicherheit erhöht. Durch die Busschleuse kann der Busverkehr auch ohne separate Busspur ungehindert zum Knotenpunkt Weißlillengasse / Ludwigsstraße vorfahren. Durch die separate Aufstellmöglichkeit des Busses am nördlichen Knotenpunkt wird eine Koordinierung der beiden Knotenpunkte entlang der Weißliliengasse nicht notwendig sein. Der Bus kann am nördlichen Knotenpunkt über ein separates Lichtsignal gesteuert werden.

6 Ausfahrt Lieferverkehr über die Eppichmauergasse

Der Anlieferungsverkehr zum Einkaufsquartier soll zukünftig von der Weißliliengasse in die Ludwigsstraße zur Fuststraße anfahren. Im Anschluss an den Lade- sowie Liefervorgang soll der Lieferverkehr über die Eppichmauergasse nach Süden auf die Weißliliengasse ausfahren. Es werden in diesem Bereich etwa 5 Anlieferungsfahrzeuge zur vormittäglichen und zur nachmittäglichen Spitzenstunde prognostiziert. Zusammen mit dem bereits bestehenden Kfz-Verkehr handelt es sich um etwa 20 Fahrzeuge, die von der Eppichmauergasse am Knotenpunkt Weißliliengasse / Eppichmauergasse ausfahren. Eine Ausfahrt des Lieferverkehrs von der Eppichmauergasse in Richtung Norden ist aufgrund der Platzverhältnisse nicht möglich. Um diesen Abbiegevorgang des Lieferverkehrs in Richtung Norden zu verhindern, sollte hierfür eine entsprechende Beschilderung angebracht werden. Ein Beispiel zeigt **Abbildung 6.**

Abbildung 6: Beschilderung mit Zeichen 209-10 und Zeichen1049-13 zur Verhinderung des Abbiegevorgangs von Schwerverkehr in nördliche Richtung

Damit eine Ausfahrt der Einsatzfahrzeuge der Polizei über die Eppichmauergasse zur Weißliliengasse weiterhin durchgängig gegeben ist, ist die Ausfahrt der Lieferfahrzeuge aus dem Anlieferungsbereich signaltechnisch zu regeln. Die Ausfahrt aus der Andienungszone wird mit der Lichtsignalanlage Weißliliengasse/Eppichmauergasse koordiniert, so dass eine Ausfahrt aus der Andienungszone nur dann erlaubt wird, wenn das Fahrzeug in "Grüner Welle" auf die Weißliliengasse ausfahren kann. Dies erfolgt nicht nur im Einsatzfall, sondern im Regelfall. Das ausfahrende Fahrzeug kann sich über entsprechende technische Hilfsmittel die Freigabe der Ausfahrt anfordern.

7 Zusammenfassung und Fazit

In Mainz soll der Bebauungsplan "Einkaufsquartier südlich der Ludwigsstraße (A262)" aufgestellt werden. Es sollen somit die planungsrechtlichen Voraussetzungen für eine Neustrukturierung des Bereiches südlich der Ludwigsstraße im Hinblick auf die Entwicklung eines Einkaufsquartiers geschaffen werden.

Im Rahmen dessen soll das Karstadt-Areal in zentraler Lage an der Ludwigsstraße umgenutzt und umgestaltet werden. Der benachbarte Gebäudekomplex an der Fuststraße soll zurückgebaut und durch einen Neubau ersetzt werden. Der Bebauungsplan sieht außerdem eine mögliche Aufstockung der benachbarten Pavillons (WMF und Leuchter) vor. Das Quartier umfasst Nutzungen wie Einkauf, Gastronomie, Kultur, Hotel und Wohnungen. Die vorliegende Verkehrsuntersuchung stellt dar, wie sich dies verkehrlich auf das umliegende Straßennetz auswirkt.

Auf Basis von Verkehrszählungen, die von der Stadtverwaltung zur Verfügung gestellt wurden, wurde ein Verkehrsmengengerüst aufgebaut, das mit dem prognostizierten Kfz-Neuverkehr des Untersuchungsgebietes beaufschlagt wurde. Der Verkehr von entfallenden Nutzungen wurde entsprechend herausgerechnet. In Summe ergibt sich daraus ein absoluter Kfz-Neuverkehr von werktäglich ca. 2.100 Kfz-Fahrten (1.050 Quell- und 1.050 Zielfahrten). Diese Fahrten verteilen sich auf das umliegende Straßennetz. In der Tiefgarage am Plangebiet kann ca. 60 Prozent des Gesamtverkehrs, induziert durch das Plangebiet, abgewickelt werden. Die übrigen ca. 40 Prozent verteilen sich auf die umliegenden Parkhäuser.

In der Weißliliengasse und der Großen Langgasse erhöht sich die Kfz-Verkehrsmenge durch das Plangebiet werktäglich um etwa 10 Prozent im Vergleich zu den Verkehrsmengen im Bestand.

Schließlich wurden sechs relevante Knotenpunkte im umliegenden Verkehrsnetz im Bestand (=Prognose-Nullfall) und im Prognose-Planfall auf ihre Leistungsfähigkeit untersucht. Zusätzlich wurde der Anschluss A1, der die Tiefgarage des Entwicklungsvorhabens an das öffentliche Verkehrsnetz anbindet, im Prognose-Planfall untersucht. An den Knotenpunkten K3 (Große Bleiche – Bauhofstraße / Flachsmarktstraße) und K4 (Rheinstraße / Holzhofstraße) werden bereits im Bestand zur vormittäglichen und nachmittäglichen Spitzenstunde Maßnahmen zur Ertüchtigung der Lichtsignalanlage erforderlich. Es ist jedoch ausreichend, die bestehenden Signalprogramme geringfügig anzupassen. Die Knotenpunkte K1, K5 und K6 weisen mit QSV B sowohl zur vormittäglichen als auch zur nachmittäglichen Spitzenstunde gute Leistungsfähigkeiten auf. K2 ist ebenfalls mit QSV B zur vormittäglichen und QSV C zur nachmittäglichen Spitzenstunde leistungsfähig. Es zeigt sich, dass der Rückstau an den Knotenpunkten teilweise zu benachbarten Knotenpunkten reicht. Insgesamt ist jedoch festzustellen, dass die Überprüfung der Leistungsfähigkeit mit den Festzeitprogrammen der Lichtsignalanlagen durchgeführt wurde.

Die Signalisierung der Knotenpunkte K1, K3 und K4 vor Ort ist dagegen über eine verkehrsabhängige Steuerung geregelt, was den Verkehrsablauf noch einmal positiv beeinflusst.

Eine Überprüfung der Leistungsfähigkeit der Knotenpunkte im Prognosefall hat gezeigt, dass die zusätzlichen Verkehrsmengen im jetzigen Ausbauzustand der Knotenpunkte abgewickelt werden können. Wie im Bestand werden hierfür geringfügige Anpassungen des Signalprogramms an K3 und K4 notwendig. Die Rückstaulängen werden durch den Neuverkehr nicht bzw. nur unbedeutend verlängert. Die Qualitätsstufen der Knotenpunkte stellt sich analog wie im Bestand dar. Der Anschluss A1 zur Tiefgarage des Plangebietes weist zur vormittäglichen Spitzenstunde mit QSV A eine sehr gute Qualität und zur nachmittäglichen Spitzenstunde mit QSV B eine gute Verkehrsqualität des Verkehrsablaufs auf.

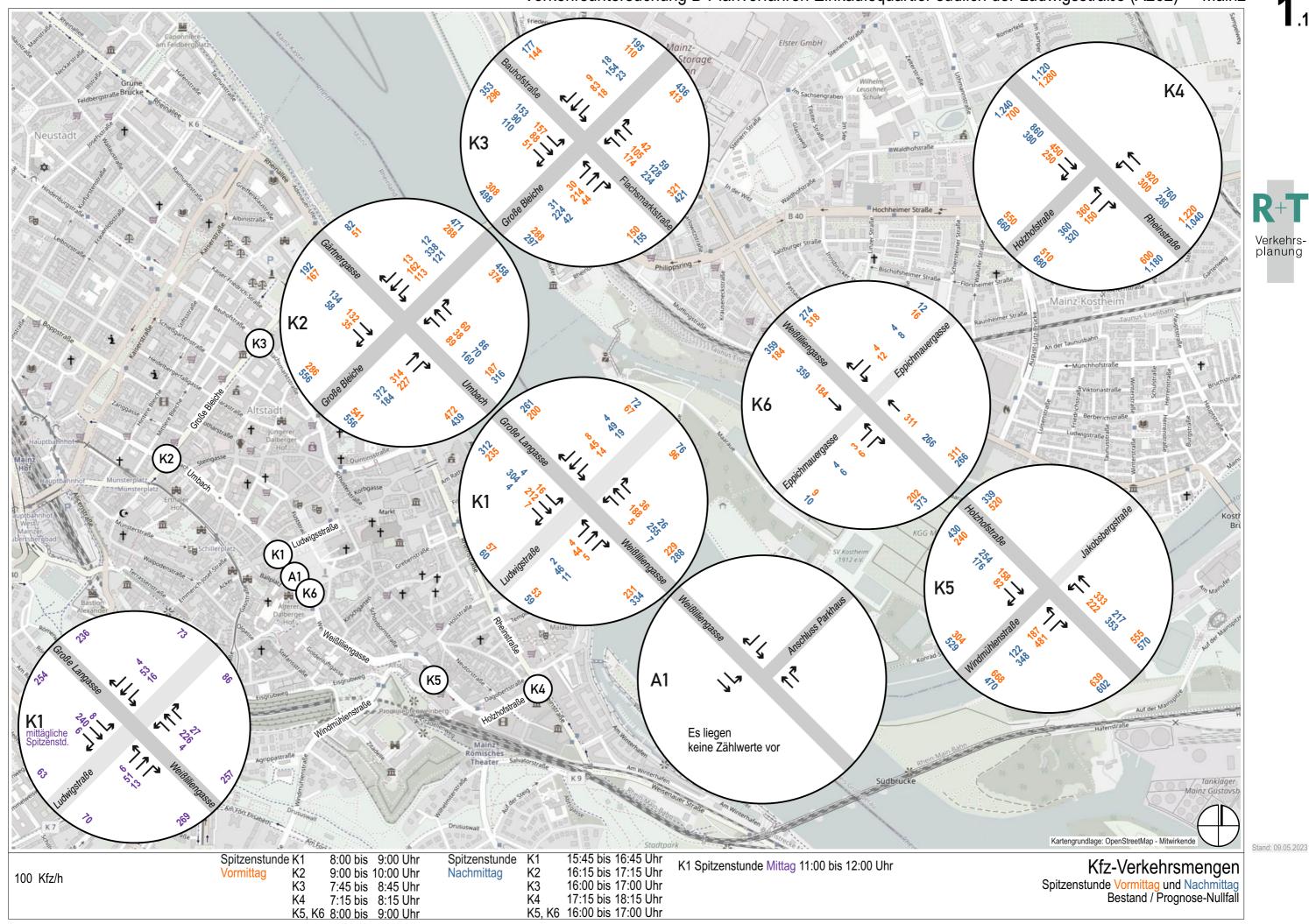
Für den anliegenden Bereich der Weißliliengasse mit der Anbindung der Tiefgarage wurde eine Umgestaltungslösung entwickelt, die den verkehrlichen und städtebaulichen Anforderungen besser genügt als die vorhandene Situation. Die Vorzugsvariante greift das Gestaltungsprinzip der großen Langgasse auf. Mit dieser Variante wird ein guter Verkehrsablauf ermöglicht und durch die Verlegung des Gehweges vor die Arkaden verbessern sich zudem die Sichtverhältnisse bei der Tiefgaragenausfahrt, was neben der Übersichtlichkeit auch gleichzeitig die Verkehrssicherheit erhöht. Zur Optimierung des Busverkehrs wird eine Busschleuse vorgesehen sowie eine separate Aufstellmöglichkeit am Knotenpunkt Ludwigsstraße/ Weißliliengasse. Der Bus kann am nördlichen Knotenpunkt über ein separates Lichtsignal gesteuert werden.

Die Ausfahrt des Anlieferungsverkehrs aus dem Anlieferungsbereich ist signaltechnisch zu regeln, indem das Signalzeichen der Ausfahrt der Andienungszone mit der Lichtsignalanlage am Knotenpunkt Weißliliengasse/Eppichmauergasse koordiniert wird. Die Koordination ist dabei so einzurichten, dass eine Ausfahrt grundsätzlich nur dann gegeben ist, wenn der Anlieferungsverkehr in "Grüner Welle" auf die Weißliliengasse ausfahren kann.

Aus verkehrlicher Sicht kann die vorgesehene Entwicklung des Plangebietes Einkaufsquartier südlich der Ludwigsstraße erfolgen. Das umliegende Straßennetz ist ausreichend leistungsfähig, um die prognostizierten Verkehrsmengen im jetzigen Ausbauzustand abwickeln zu können. Es werden geringfügige Anpassungen am Signalprogramm an den Knotenpunkten K3 und K4 erforderlich.

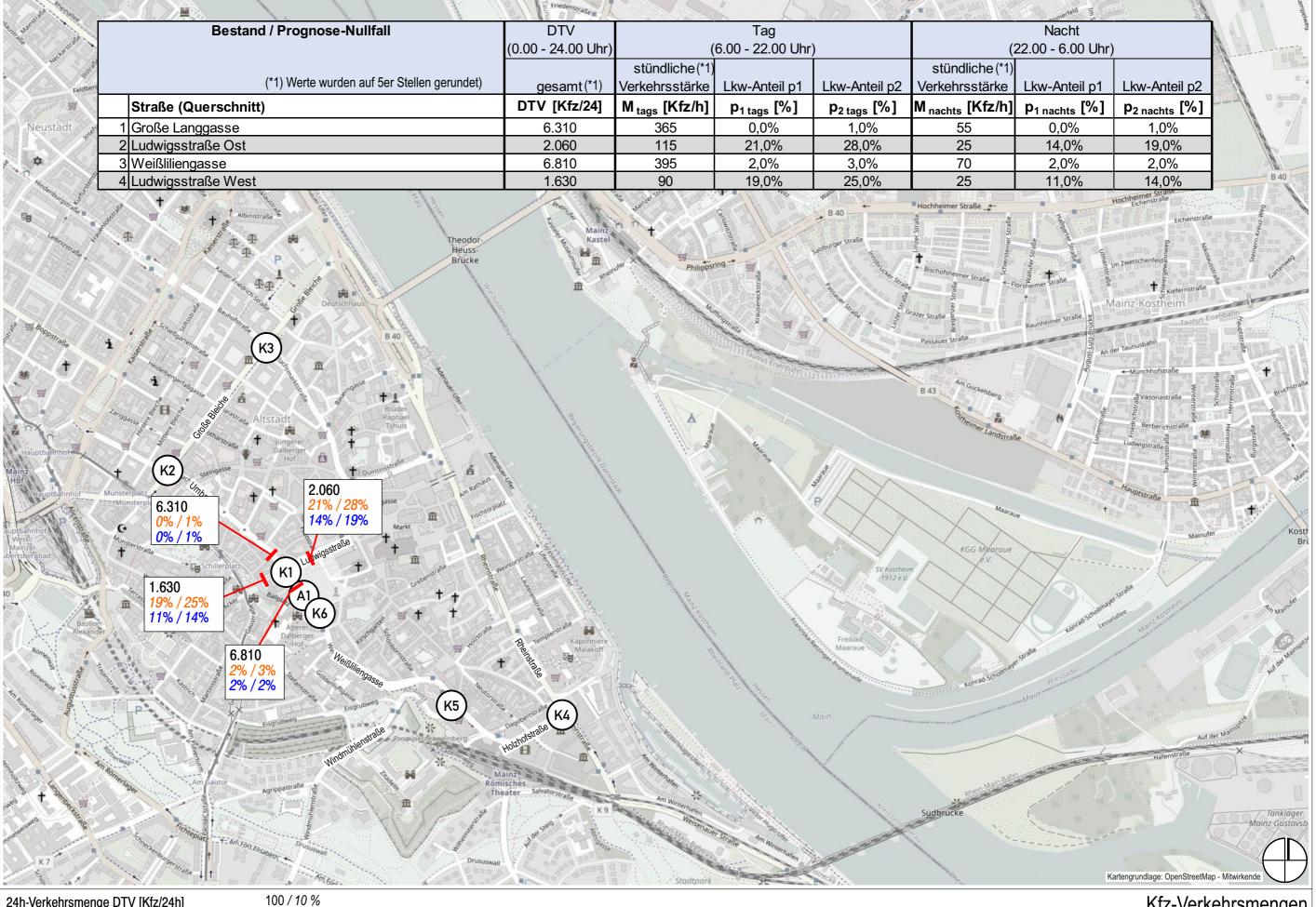
Verzeichnisse

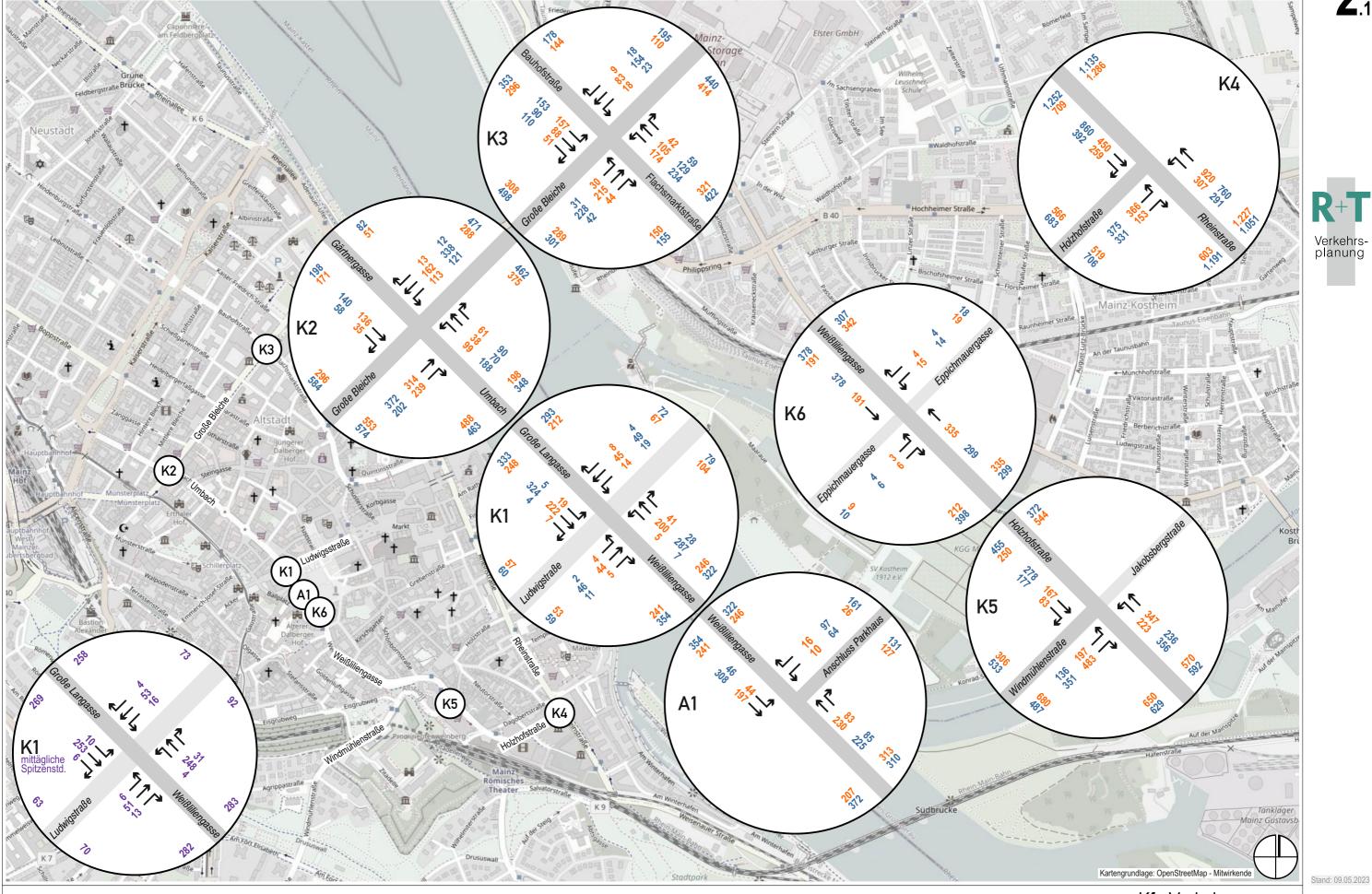
Abbildun	ngen im Text:	
Abbildung	g 1: Übersicht Umgriff Untersuchungsgebiet	3
Abbildung	g 2: Verteilung Quell- und Zielverkehr des Untersuchungsgebie im umlie- genden Verkehrsnetz (1/2)	tes 9
Abbildunç	g 3: Verteilung Quell- und Zielverkehr des Untersuchungsgebie im umliegenden Verkehrsnetz (2/2)	tes 10
Abbildung	g 4: Querschnitt für oberen Bereich Weißliliengasse	22
Abbildunç	g 5: Querschnitt für mittleren Bereich der Weißliliengasse vor E /Ausfahrt zur Tiefgarage	in- 22
Abbildunç	g 6: Beschilderung mit Zeichen 209-10 und Zeichen 1049-13 z Verhinderung des Abbiegevorgangs von Schwerverkehr i nördliche Richtung	
Tabellen		
Tabelle 1	: Kenngrößen zu den Nutzungen des Untersuchungsgebietes	6
Tabelle 2	: Kfz-Verkehrsaufkommen durch das Untersuchungsgebiet	7
Tabelle 3	: Übersicht der Qualitätsstufen der Knotenpunkte	20
Plandars	tellungen als Anhang:	
Plan 1.1 Plan 1.2	Kfz-Verkehrsmengen Bestand Spitzenstunde Vormittag und Nachmittag 24h-Verkehrsmenge, SV-Anteil tags und SV-Anteil nachts	
Plan 2.1 Plan 2.2	Kfz-Verkehrsmengen Planfall Spitzenstunde Vormittag und Nachmittag 24h-Verkehrsmenge, SV-Anteil tags und SV-Anteil nachts	
Plan 3.1 Plan 3.2	Qualitätsstufen des Verkehrsablaufs Bestand Prognose-Planfall	
Plan 4	Konzentioneller Entwurf - Vorzugsvariante	


Anlagen:

Anlage 1 Verkehrserzeugung Untersuchungsgebiet

Anlage 2 Leistungsfähigkeitsuntersuchung Bestand

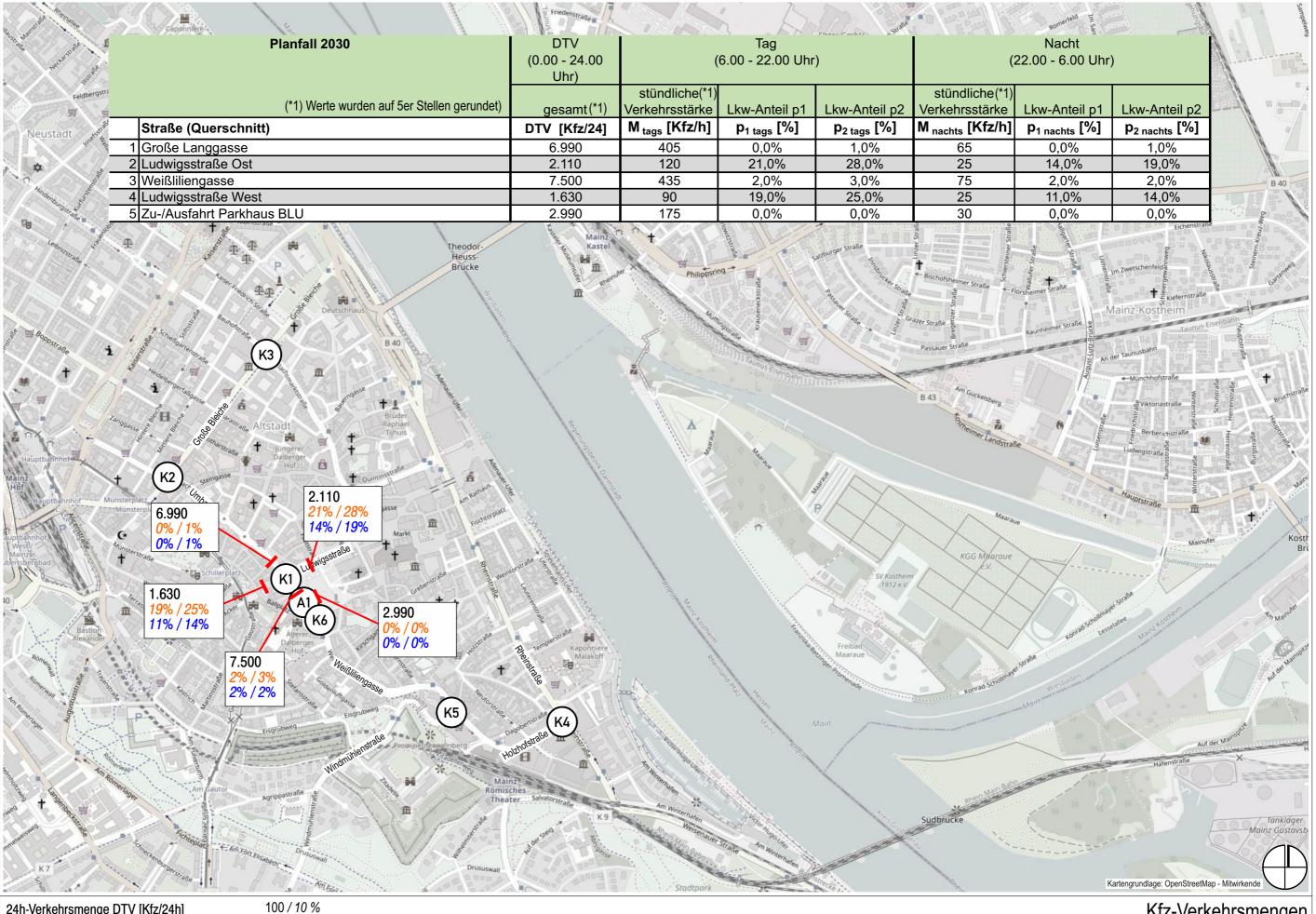

Anlage 3 Leistungsfähigkeitsuntersuchung Prognose-Planfall



K5, K6 8:00 bis 9:00 Uhr

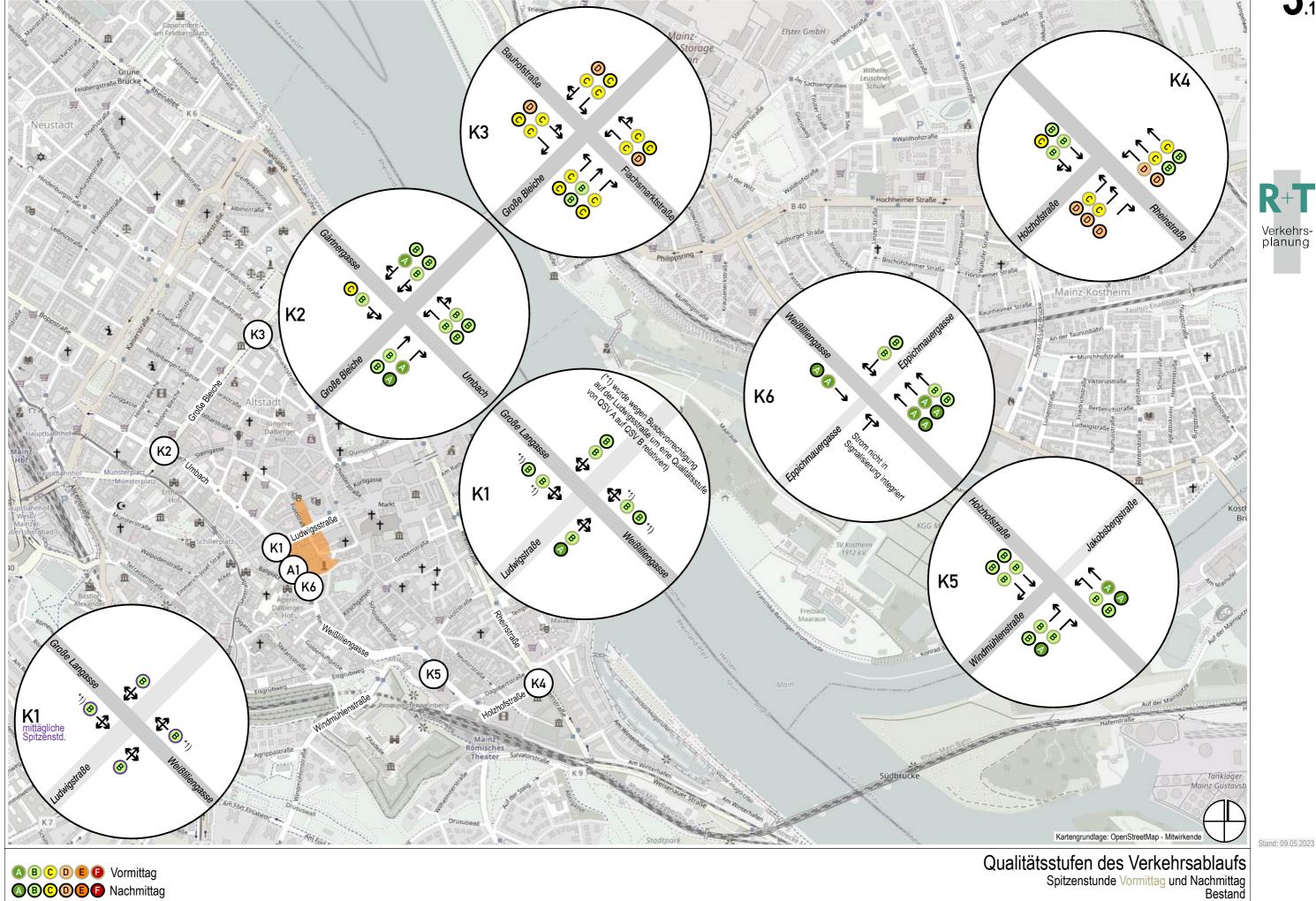
Verkehrsplanung

Stand: 09.05.2023

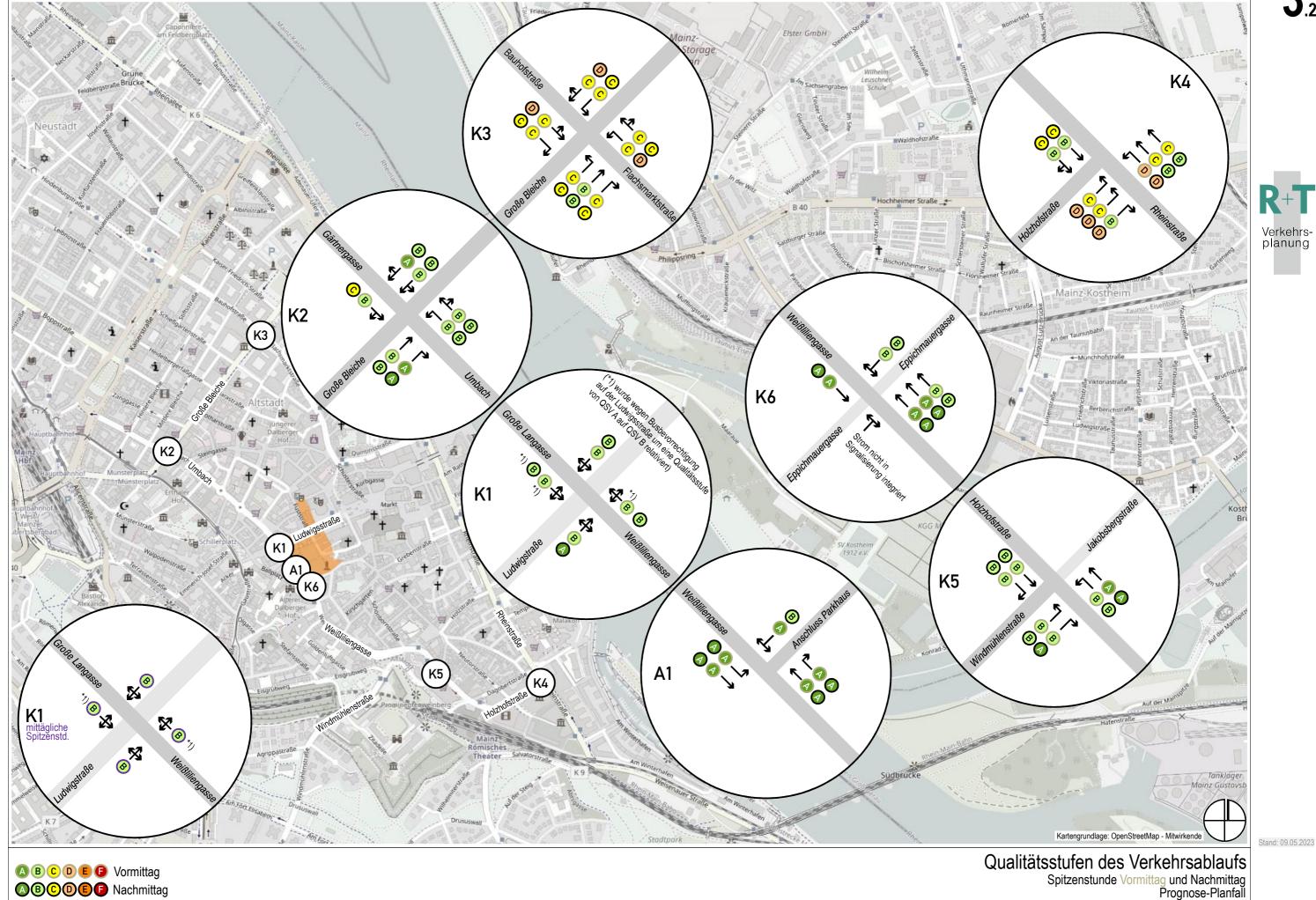


100 Kfz/h (vormittägliche Spitzenstunde)100 Kfz/h (nachmittägliche Spitzenstunde)

100 Kfz/h (mittägliche Spitzenstunde)


Kfz-Verkehrsmengen Spitzenstunde Vormittag und Nachmittag Prognose-Planfall

Verkehrsplanung



Stand: 09.05.2

Prognose-Planfall

Qualitätsstufen des Verkehrsablaufs Spitzenstunde Vormittag und Nachmittag Bestand

Qualitätsstufen des Verkehrsablaufs Spitzenstunde Vormittag und Nachmittag Prognose-Planfall

		Bestand verbleibend	Neuverkehr	Bestand entfällt	Neuverkehr abzügl. "Bestand entfällt"	Neuverkehr abzügl. "Bestand entfällt" Pkw
Anzahl Kfz-Fahrten / Tag (Quell- und Zielverkehr)	[Kfz / 24h]	2.511	3.312	1.212	2.101	1.973
Zielverkehr	[Kfz / 24h]	1.257	1.656	606	1.050	986
Quellverkehr	[Kfz / 24h]	1.257	1.656	606	1.050	986
Summe Kfz-Fahrten / Spitzenstunde vormittags	[Kfz/h]	102	138	64	74	63
Zielverkehr	[Kfz/h]	95	104	55	49	41
Quellverkehr	[Kfz/h]	7	34	9	25	22
Summe Kfz-Fahrten / Spitzenstunde mittags	[Kfz/h]	377	207	98	109	95
Zielverkehr	[Kfz/h]	194	103	49	54	48
Quellverkehr	[Kfz/h]	183	104	49	55	47
Summe Kfz-Fahrten / Spitzenstunde nachmittags	[Kfz / h]	214	261	115	146	137
Zielverkehr	[Kfz/h]	80	126	53	73	70
Quellverkehr	[Kfz/h]	134	135	62	73	67
					•	Neuverkehr Lkw
Lkw-Fahrten / Tag (Ziel- und Quellverkehr)	[Lkw/24h]	85	166	38	128	128
Zielverkehr	[Lkw/24h]	43	83	19	64	64
Quellverkehr	[Lkw/24h]	43	83	19	64	64
Lkw-Fahrten / Spitzenstunde vormittags	[Lkw/h]	5	14	3	11	11
Zielverkehr	[Lkw/h]	4	10	2	8	8
Quellverkehr	[Lkw/h]	1	4	1	3	3
Lkw-Fahrten / Spitzenstunde mittags	[Lkw/h]	7	18	4	14	14
Zielverkehr	[Lkw/h]	3	8	2	6	6
Quellverkehr	[Lkw/h]	4	10	2	8	8
Lkw-Fahrten / Spitzenstunde nachmittags	[Lkw/h]	3	11	2	9	9
Zielverkehr	[Lkw/h]	1	4		3	3
Quellverkehr	[Lkw/h]	2	7	1	6	6

						Neuv	erkehr				
				Karstadt				Fuststraße		WMF Pavillon (Gutenberg- platz 1)	Leuchter Pavillon (Gutenberg- platz 2)
Gewerbenutzung		Handel (Waren- /Kaufhaus)	Restaurant (Gastro. Dachter.)	Vollsorti- menter	Hotel (incl. Beschäft. für Tagungs- räume)	Restaurant (im Hotel)	Handel (kleinfl.)	Kultur	Büro	Büro	Büro
Bruttogeschossfläche (BGF)	[m²]	7.078	768	2.149	8.810	686	1.975	2.340	525	300	800
Zimmeranzahl Hotel / Sitzplatzanzahl					194			721			
Aufteilung (Filiale / Büroräume)											
m ² BGF je Beschäftigtem	[m ² /Pers.]	65	40	90	75	40	35	70	35	35	35
Pkw je Zimmer (Hotel)	[Pkw/Zimmer]										
Beschäftigte	[Pers.]	109	19	24	117	17	56	33	15	9	23
•											
Beschäftigtenverkehr											
Wege/Beschäftigtem	[Wege/Pers.]	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5
Anwesenheitsgrad	[%]	85%	60%	60%	85%	60%	85%	85%	85%	85%	85%
Summe Wege	[Wege]	232	29	36	249	26	119	70	32	19	49
		Quell-/ Binnen- Zielv. v.	Quell-/ Binnen- Zielv. v.	Quell-/ Zielv.	Quell-/ Binnen- Zielv. v.	Quell-/ Binnen- Zielv. v.	Quell-/ Binnen- Zielv. v.	Quell-/ Binnen- Zielv. v.	Quell-/ Binnen- Zielv. v.	Quell-/ Binnen- Zielv. v.	Zielv. v.
Aufteilung Quell- und Zielv./Binnenv.	[%]	50% 50%	50% 50%	50%	50% 50%	50% 50%	50% 50%	50% 50%	50% 50%	50% 50%	50% 50%
Summe Wege Beschäftigte Q- u. Zv./Bv.	[Wege]	116 116	15 15	18	124 124	13 13	60 60	35 35	16 16	10 10	24 24
MIV-Anteil	[%]	50% 25%	50% 25%	50%	50% 25%	50% 25%	50% 25%	50% 25%	50% 25%	50% 25%	50% 25%
Kfz-Besetzungsgrad	[Pers./Pkw]	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1	1,1
Kfz-Fahrten / Tag (Ziel- und Quellverkehr)	[Kfz/24h]	80	10	8	86	10	42	24	12	8	18
Zielverkehr	[Kfz/24h]	40	5	4	43	5	21	12	6	4	9
Quellverkehr	[Kfz/24h]	40	5	4	43	5	21	12	6	4	9
Anteile Spitzenstunde vormittags											
Zielverkehr	[%]	35,4%	35,4%	35,4%	20,0%	35,4%	35,4%	7,0%	28,8%	28,8%	28,8%
Quellverkehr	[%]	0,2%	0,2%	0,2%	5,0%	0,2%	0,2%	2,2%	1,5%	1,5%	1,5%
Kfz-Fahrten / Spitzenstunde vormittags	[Kfz/h]	14	2	1	11	2	7	1	2	1	3
Zielverkehr	[Kfz/h]	14	2	1	9	2	7	1	2	1	3
Quellverkehr	[Kfz/h]	0	0	0	2	0	0	0	0	0	0
Anteile Spitzenstunde mittags											
Zielverkehr	[%]	1,0%	1,0%	1,0%	0,5%	1,0%	1,0%	0,9%	4,6%	4,6%	4,6%
Quellverkehr	[%]	2,3%	2,3%	2,3%	2,5%	2,3%	2,3%	2,3%	4,6%	4,6%	4,6%
Kfz-Fahrten / Spitzenstunde mittags	[Kfz/h]	1	0	0	1	0	0	0	0	0	0
Zielverkehr	[Kfz/h]	0	0	0	0	0	0	0	0	0	0
Quellverkehr	[Kfz/h]	1	0	0	1	0	0	0	0	0	0
Anteile Spitzenstunde nachmittags											
Zielverkehr	[%]	1,7%	1,7%	1,7%	1,5%	1,7%	1,7%	1,7%	1,5%	1,5%	1,5%
Quellverkehr	[%]	15,8%	15,8%	15,8%	12,0%	15,8%	15,8%	15,8%	15,1%	15,1%	15,1%
Kfz-Fahrten / Spitzenstunde nachmittags	[Kfz/h]	7	1	1	6	1	3	2	1	1	1
Zielverkehr	[Kfz/h]	1	0	0	1 -	0	0	0	0	0	0
Quellverkehr	[Kfz/h]	6	1	1	5	1	3	2	1	1	1

						Neuv	erkehr				
				Karstadt				Fuststraße		WMF Pavillon (Gutenberg- platz 1)	Leuchter Pavillon (Gutenberg- platz 2)
Gewerbenutzung		Handel (Waren- /Kaufhaus)	Restaurant (Gastro. Dachter.)	Vollsorti- menter	Hotel	Restaurant (im Hotel)	Handel (kleinfl.)	Kultur	Büro	Büro	Büro
Bruttogeschossfläche (BGF)	[m²]	7.078	768	2.149		686	1.975	2.340	525	300	800
Zimmeranzahl Hotel / Sitzplatzanzahl	[]		1		194			721			
Aufteilung (Filiale / Büroräume)											
Verkaufsfläche (VKF)	[m²]	4.400		1400			1.020				
m ² BGF je Beschäftigtem	[m ² /Pers.]	65	40	90	75	40	35		35	35	35
Pkw je Zimmer (Hotel)											
Beschäftigte	[Pers.]	109	19	24		17	56		15	9	23
Kundenverkehr											
Kunden/m² VKF	[Person/m²]	0,8		1,0			0,8				
Kunden/m² BGF	[Person/m²]										
Kunden/Sitzplatz bzw. Kunden/Zimmer					1,2			1,5			
Anzahl Kunden	[Pers.]	3.520		1.400			816	1.082			
Wege pro Kunde	[Wege/Pers.]	2,0		2,0	4,0		2,0	2,0			
Kundenwege/Beschäftigtem	[Wege]		45			45			1	1	1
Summe Wege	[Wege]	7040	855	2800	931	765	1632	2.164	15	9	23
		Quell-/ Binnen- Zielv. v.	Quell-/ Binnen- Zielv. v.	Quell-/ Binnen- Zielv. v.	Quell-/ Binnen- Zielv. v.	Quell-/ Binnen- Zielv. v.	Quell-/ Binnen- Zielv. v.	Quell-/ Binnen- Zielv. v.	Quell-/ Binnen- Zielv. v.	Quell-/ Binnen- Zielv. v.	Quell-/ Binnen- Zielv. v.
Aufteilung Quell- und Zielv./Binnenv.	[%]	40% 60%	40% 60%	40% 60%	90% 10%	40% 60%	40% 60%	40% 60%	40% 60%	40% 60%	40% 60%
Summe Wege Kunden Q- u. Zv./Bv.	[Wege]	2816 4224	342 513	1120 1680	838 93	306 459	653 979	866 1298	6 9	4 5	9 14
MIV-Anteil	[%]	50% 25%	50% 25%	50% 25%	50% 25%	50% 25%	50% 25%	50% 25%	50% 25%	50% 25%	50% 25%
Kfz-Besetzungsgrad	[Pers./Pkw]	1,4	1,6	1,4	1,1	1,6	1,4	1,5	1,1	1,1	1,1
Verbundeffekt	[%]	45%	10%	45%	0%	10%	45%	0%	0%	0%	0%
Kfz-Fahrten / Tag (Ziel- und Quellverkehr)	[Kfz/24h]	968	168	386	402	152	224	506	6	4	8
Zielverkehr	[Kfz/24h]	484	84	193	201	76	112	253	3	2	4
Quellverkehr	[Kfz/24h]	484	84	193	201	76	112	253	3	2	4
	['0'	 	100		· · · ·	 		<u> </u>	 	·
Anteile Spitzenstunde vormittags											
Zielverkehr	[%]	5,9%	0,0%	5,9%	2,5%	0,0%	5,9%	0,0%	6,6%	6,6%	6,6%

						Neuve	erkehr				
				Karstadt				Fuststraße		WMF Pavillon (Gutenberg- platz 1)	Leuchter Pavillon (Gutenberg- platz 2)
Gewerbenutzung		Handel (Waren- /Kaufhaus)	Restaurant (Gastro. Dachter.)	Vollsorti- menter	Hotel (incl. Beschäft. für Tagungs- räume)	Restaurant (im Hotel)	Handel (kleinfl.)	Kultur	Büro	Büro	Büro
Bruttogeschossfläche (BGF)	[m²]	7.078	768	2.149	8.810	686	1.975	2.340	525	300	800
Beschäftigte	[Pers.]	109	19	24	117	17	56	33	15	9	23
Wirtschaftsverkehr											
Lkw-Fahrten/Beschäftigtem	[Wege/Person]		0,65		0,5	0,65	0,6	0,3	0,075	0,075	0,075
Lkw-Fahrten/100 qm BGF	[Wege/100m ² BGF]	0,28	0,00	0,475	0,5	0,00	0,0	0,5	0,073	0,073	0,073
Summe Kfz-Fahrten	[Wege]	20	13	10	60	12	34	10	2	2	2
Cumilio 142 1 dilitori	[TTOGO]				- 55		0.		_		
Kfz-Fahrten / Tag (Ziel- und Quellverkehr)	[Kfz/24h]	20	14	10	60	12	34	10	2	2	2
Zielverkehr	[Kfz/24h]	10	7	5	30	6	17	5	1	1	1
Quellverkehr	[Kfz/24h]	10	7	5	30	6	17	5	1	1	1
Antoile Chitzonatunda varmittaga											
Anteile Spitzenstunde vormittags Zielverkehr	FO/ 1	10,4%	10,4%	10,4%	10,4%	10,4%	10,4%	10,4%	10,4%	10,4%	10,4%
Quellverkehr	[%] [%]	6,5%	6,5%	6,5%	6,5%	6,5%	6,5%	6,5%	6,5%	6,5%	6.5%
Kfz-Fahrten / Spitzenstunde vormittags	[%] [Kfz/h]	2	1	1	5	1	3	1	0,5%	0,5%	0,5%
Zielverkehr	[Kfz/h]	1	1	1	3	1	2	1	0	0	0
Quellverkehr	[Kfz/h]	1	0	0	2	0	1	0	0	0	0
		-			_		-				·
Anteile Spitzenstunde mittags											
Zielverkehr	[%]	9,9%	9,9%	9,9%	9,9%	9,9%	9,9%	9,9%	9,9%	9,9%	9,9%
Quellverkehr	[%]	10,3%	10,3%	10,3%	10,3%	10,3%	10,3%	10,3%	10,3%	10,3%	10,3%
Kfz-Fahrten / Spitzenstunde mittags	[Kfz/h]	2	2	1	6	2	4	1	0	0	0
Zielverkehr	[Kfz/h]	1	1	0	3	1	2	0	0	0	0
Quellverkehr	[Kfz/h]	1	1	1	3	1	2	1	0	0	0
Anteile Spitzenstunde nachmittags											
Zielverkehr	[%]	6,8%	6,8%	6,8%	6,8%	6,8%	6,8%	6,8%	6,8%	6,8%	6,8%
Quellverkehr	[%]	8,8%	8,8%	8,8%	8,8%	8,8%	8,8%	8,8%	8,8%	8,8%	8,8%
Kfz-Fahrten / Spitzenstunde nachmittags	[Kfz/h]	2	1	0,070	5	1	2	0,070	0,070	0,070	0,070
Zielverkehr	[Kfz/h]	1	0	0	2	0	1	0	0	0	0
Quellverkehr	[Kfz/h]	1	1	0	3	1	1	0	0	0	0

												Ros	stand (v	orhlait	nend)										
				١	Veißlili	engasse					Leuchter			l pieir		traße 4		(Sutenbe	ergplatz	1	l Gi	utenber	gplatz 3	3-5
Gewerbenutzung			Deutscl	ne Bank		Βü	iro EG		Dent narzt		Handel kleinfl.)		stro		andel einfl.)		üro	Hai	ndel infl.)		axis		stro	01	iro
Bruttogeschossfläche (BGF)	[m²]		5.4	119		47	75	1.4	102		200	6	00	3	300	1.1	170	3	00	60	00	1.9	949	1.2	275
Zimmeranzahl Hotel / Sitzplatzanzahl																									
Aufteilung (Filiale / Büroräume)		-	iale %	Bü räu 95	me	_	-	-				-				-		-		-	-	-		-	
m ² BGF je Beschäftigtem	[m ² /Pers.]	2	25	3	5	3	5	4	0		35	4	10		35	3	35	3	35	4	0	4	10	3	5
Pkw je Zimmer (Hotel)		-		-	-	-	-					-						-		-	-	-		-	
Beschäftigte	[Pers.]	1	11	14	17	1	4	3	5		6	1	5		9	3	33		9	1	5	4	9	3	6
Beschäftigtenverkehr																									
Wege/Beschäftigtem	[Wege/Pers.]	2	.,5	2	,5	2	,5	2	,5		2,5	2	,5		2,5	2	,5	2	.,5	2	,5	2	,5	2	,5
Anwesenheitsgrad	[%]		5%	85	5%	85	5%	85	5%		85%	60)%	8	5%		5%	85	5%	85	5%	60)%	85	5%
Summe Wege	[Wege]	2	23	3	12	3	0	7	4		13	2	23		19	7	70	1	19	3	2	7	' 4	7	7
		Quell-/ Zielv.	Binnen- v.	Quell-/ Zielv.	Binnen- v.	Quell-/ Zielv.	Binnen- v.	Quell-/ Zielv.	Binnen- v.	Quel Zielv		Quell-/ Zielv.	Binnen- v.	Quell-/ Zielv.	Binnen- v.	Quell-/ Zielv.	Binnen- v.	Quell-/ Zielv.	Binnen- v.	Quell-/ Zielv.	Binnen- v.	Quell-/ Zielv.	Binnen- v.	Quell-/ Zielv.	Binnen- v.
Aufteilung Quell- und Zielv./Binnenv.	[%]	50%	50%	50%	50%	50%	50%	50%	50%	50%	% 50%	50%	50%	50%	50%	50%	50%	50%	50%	50%	50%	50%	50%	50%	50%
Summe Wege Beschäftigte Q- u. Zv./Bv.	[Wege]	12	12	156	156	15	15	37	37	7		11	11	10	10	35	35	10	10	16	16	37	37	38	38
MIV-Anteil	[%]	50%	25%	50%	25%	50%	25%	50%	25%	50%	% 25%	50%	25%	50%	25%	50%	25%	50%	25%	50%	25%	50%	25%	50%	25%
Beschäftigtenanteil (Hotel)	[%]	-		_		_		-				-													
Kfz-Besetzungsgrad	[Pers./Pkw]		1	,1		1	,1	1	,1		1,1	1	,1		1,1	1	,1	1	,1	1	,1	1	,1	1	,1
Kfz-Fahrten / Tag (Ziel- und Quellverkehr)	[Kfz/24h]		1	14		1	0	2	6		5		8		6	2	24		6	1	2	2	26	2	26
Zielverkehr	[Kfz/24h]			7			5		3		3		4		3		2		3	(3		3
Quellverkehr	[Kfz/24h]		5	57		,	5	1	3		3	,	4		3	1	2	,	3	(5	1	3	1	3
Anteile Spitzenstunde vormittags																									
Zielverkehr	[%]		28.	8%		28.	8%	28.	8%	3	35,4%	35.	4%	35	5,4%	28	,8%	35.	.4%	28.	8%	35.	4%	28.	8%
Quellverkehr	[%]			5%		1,5		1,		_	0,2%		2%		,2%		5%		2%	1,			2%		5%
Kfz-Fahrten / Spitzenstunde vormittags	[Kfz/h]		1	7		·	1		4		1		1		1		3		1		2		5		4
Zielverkehr	[Kfz/h]		1	6			1	-	4		1		1		1		3		1		2		5	4	4
Quellverkehr	[Kfz/h]			1		()	()		0		0		0		0		0	()	(0	(0
Anteile Spitzenstunde mittags	+																								
Zielverkehr	[%]		4,0	6%		4,6	6%	4,6	5%		1,0%	1,0	0%	1	,0%	4,	6%	1,0	0%	4,6	6%	1,0	0%	4,6	3%
Quellverkehr	[%]			6%		4,6	6%	4,6	5%	_	2,3%	2,	3%	2	,3%	4,	6%	2,	3%	4,6	6%	2,3	3%		3%
Kfz-Fahrten / Spitzenstunde mittags	[Kfz/h]		(6)		2		0		0		0		2		0	()		0		2
Zielverkehr	[Kfz/h]			3		(-		1		0		0		0		1		0	(0		1
Quellverkehr	[Kfz/h]			3		()		1		0		0		0		1		0	()	(0		1
Anteile Spitzenstunde nachmittags		+																							-
Zielverkehr	[%]			5%		1,5	5%	1,	5%		1,7%	1,	7%	1	,7%	1,	5%	1,	7%	1,		1,7	7%	1,5	5%
Quellverkehr	[%]			,1%		15,		15,		1	15,8%		,8%		5,8%	15	,1%	15	,8%	15,	1%		,8%		,1%
Kfz-Fahrten / Spitzenstunde nachmittags	[Kfz/h]			0		-			2		0		1		0		2		0	·	1		2		2
Zielverkehr	[Kfz/h]			1		())		0		0		0		0		0	()		0	(0
Quellverkehr	[Kfz/h]			9			1	:	2		0		1		0		2		0		1		2	2	2

									Restand (v	verbleibend)						
			Weiß	lilieng	asse			Leuchte	er Pavillon		straße 4	_	Gutenh	ergplatz 1	Gutenhe	rgplatz 3-5
			VVCII	milerig	jasse			Ledente	I	T usts	il also 4		Outchb	I I I I I I I I I I I I I I I I I I I	Outcribe	Igpiatz 5-5
Gewerbenutzung		Deutscl	he Bank		Büro (bei EG Dt. Bank)		Dent narzt	Handel (kleinfl.)	Gastro	Handel (kleinfl.)	Büro		andel einfl.)	Praxis	Gastro	Büro
Bruttogeschossfläche (BGF)	[m²]	5.4	419		475	1.4	402	200	600	300	1.170	3	300	600	1.949	1.275
Zimmeranzahl Hotel / Sitzplatzanzahl	1 ' '		-													
Aufteilung (Filiale / Büroräume)		Filiale 5%	Büro- räume 95%													
Verkaufsfläche (VKF)	[m²]					-		160		240		1 2	240			
m ² BGF je Beschäftigtem	[m ² /Pers.]	25	35		35	4	10	35	40	35	35		35	40	40	35
Pkw je Zimmer (Hotel)						Ι.										
Beschäftigte	[Pers.]	11	147		14	1 :	35	6	15	9	33		9	15	49	36
5	1															
Kundenverkehr	<u> </u>										•			<u> </u>	·	
Kunden/m² VKF	[Person/m²]	-						0,8		0,8			0,8			
Kunden/m² BGF	[Person/m²]	-				.										
Kunden/Sitzplatz		-				-										
Anzahl Kunden	[Pers.]	-				·		128		192		1	192			
Wege pro Kunde	[Wege/Pers.]	-				·		2,0		2,0			2,0			
Kundenwege/Beschäftigtem	[Wege]	55	10		1	1 2	25		45		1			25	45	1
Summe Wege	[Wege]	2.0	075		14	8	75	256	675	384	33	3	384	375	2.205	36
		Quell-/ Binnen- Zielv. v.	Quell-/ Binn Zielv. v.		uell-/ Binnen- ielv. v.	Quell-/ Zielv.	Binnen- v.	Quell-/ Binnen- Zielv. v.	Quell-/ Binnen- Zielv. v.	Quell-/ Binnen Zielv. v.	- Quell-/ Binne Zielv. v.	en- Quell-/ Zielv.	Binnen- v.	Quell-/ Binnen- Zielv. v.	Quell-/ Binnen- Zielv. v.	Quell-/ Binnen- Zielv. v.
Aufteilung Quell- und Zielv./Binnenv.	[%]	40% 60%	40% 609	6 40	0% 60%	40%	60%	40% 60%	40% 60%	40% 60%	40% 60%		60%	40% 60%	40% 60%	40% 60%
Summe Wege Kunden Q- u. Zv./Bv.	[Wege]	830 1245	830 124		6 8	350	525	102 154	270 405	154 230	13 20		230	150 225	882 1323	14 22
MIV-Anteil	[%]	50% 25%	50% 25	% 50	0% 25%	50%	25%	50% 25%	50% 25%	50% 25%	50% 259	6 50%	25%	50% 25%	50% 25%	50% 25%
Kundenanteil (Hotel)																
Kfz-Besetzungsgrad	[Pers./Pkw]	1	,1		1,1	1	,1	1,4	1,6	1,4	1,1		1,4	1,1	1,6	1,1
Verbundeffekt	[%]	45%	0%		0%	0	1%	45%	10%	45%	0%	4	5%	0%	10%	0%
Kfz-Fahrten / Tag (Ziel- und Quellverkehr)	[Kfz/24h]		024		4		78	35	134	54	12		54	120	434	12
Zielverkehr	[Kfz/24h]		12		2		39	18	67	27	6		27	60	217	6
Quellverkehr	[Kfz/24h]	5	12		2	1	39	18	67	27	6		27	60	217	6
Anteile Spitzenstunde vormittags				_												
Zielverkehr	[%]	6.0	6%		6,6%	6.	6%	5,9%	0,0%	5,9%	6,6%	5	,9%	6,6%	0.0%	6,6%
Quellverkehr	[%]		8%		0,8%		8%	1,1%	0.0%	1,1%	0,8%		,1%	0,8%	0.0%	0,8%
Kfz-Fahrten / Spitzenstunde vormittags	[Kfz/h]		38		0		10	1	0	2	0		2	4	0	0
Zielverkehr	[Kfz/h]		34		0		9	1	0	2	0		2	4	0	0
Quellverkehr	[Kfz/h]	,	4		0		1	0	0	0	0		0	0	0	0
Anteile Spitzenstunde mittags		-		+		-				-	+	+				
Zielverkehr	[%]	21	,3%	+	21,3%	21	,3%	8,9%	8,6%	8,9%	21,3%	8	,9%	21,3%	8,6%	21,3%
Quellverkehr	[%]		,3%		21,3%		,3%	9,0%	4,6%	9,0%	21,3%		,0%	21,3%	4,6%	21,3%
Kfz-Fahrten / Spitzenstunde mittags	[Kfz/h]		18	\top	0		50	4	9	4	2		4	26	29	2
Zielverkehr	[Kfz/h]		09	\top	0		30	2	6	2	1 1		2	13	19	1
Quellverkehr	[Kfz/h]		09		0		30	2	3	2	1		2	13	10	1
Anteile Spitzenstunde nachmittags				+		-				-	+	+				
Zielverkehr	[%]	7.	4%	\top	7,4%	7	4%	9,9%	6,4%	9,9%	7,4%	9	,9%	7,4%	6,4%	7,4%
Quellverkehr	[%]		,7%	\top	10,7%		,7%	10,1%	9,2%	10,1%	10,7%),1%	10,7%	9,2%	10,7%
Kfz-Fahrten / Spitzenstunde nachmittags	[Kfz/h])3	\top	0		25	4	10	6	1	 "	6	10	34	1 1
Zielverkehr	[Kfz/h]		38	+	0		10	2	4	3	0		3	4	14	0
Quellverkehr	[Kfz/h]	5	55		0		15	2	6	3	1 1	_	3	6	20	1

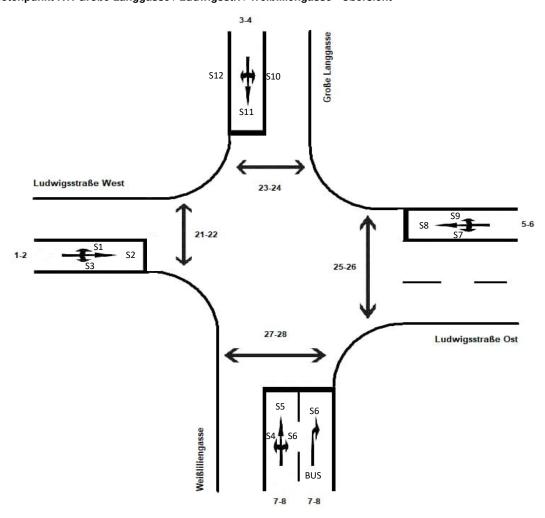
	Г						Bestand (v	rerbleibend)					
	Ī		Weißlili	engasse		Leuchter	r-Pavillon		raße 4	Gutenbe	ergplatz 1	Gutenber	gplatz 3-5
Gewerbenutzung		Deutso	he Bank	Büro (bei EG Dt. Bank)	AllDent Zahnarzt	Handel (kleinfl.)	Gastro	Handel (kleinfl.)	Büro	Handel (kleinfl.)	Praxis	Gastro	Büro
Bruttogeschossfläche (BGF)	[m²]	5.	419	475	1.402	200	600	300	1.170	300	600	1.949	1.275
Beschäftigte	[Pers.]	11	147	14	35	6	15	9	33	9	15	49	36
Wirtschaftsverkehr													
Lkw-Fahrten/Beschäftigtem	[Wege/Person]	0,	075	0,075	0,075	0,6	0,65	0,6	0,075	0,6	0,075	0,65	0,075
Lkw-Fahrten/100 qm BGF	[Wege/100m ² BGF]												
Summe Kfz-Fahrten	[Wege]		12	1	3	4	10	5	2	5	1	32	3
Kfz-Fahrten / Tag (Ziel- und Quellverkehr)	[Kfz/24h]		12	2	4	5	10	6	2	6	2	32	4
Zielverkehr	[Kfz/24h]		6	1	2	3	5	3	1	3	1	16	2
Quellverkehr	[Kfz/24h]		6	1	2	3	5	3	1	3	1	16	2
Anteile Spitzenstunde vormittags													
Zielverkehr	[%]	10),4%	10,4%	10,4%	10,4%	10,4%	10,4%	10,4%	10,4%	10,4%	10,4%	10,4%
Quellverkehr	[%]	6,	,5%	6,5%	6,5%	6,5%	6,5%	6,5%	6,5%	6,5%	6,5%	6,5%	6,5%
Kfz-Fahrten / Spitzenstunde vormittags	[Kfz/h]		1	0	0	0	1	0	0	0	0	3	0
Zielverkehr	[Kfz/h]		1	0	0	0	1	0	0	0	0	2	0
Quellverkehr	[Kfz/h]		0	0	0	0	0	0	0	0	0	1	0
Anteile Spitzenstunde mittags													
Zielverkehr	[%]	9,	,9%	9,9%	9,9%	9,9%	9,9%	9,9%	9,9%	9,9%	9,9%	9,9%	9,9%
Quellverkehr	[%]	10),3%	10,3%	10,3%	10,3%	10,3%	10,3%	10,3%	10,3%	10,3%	10,3%	10,3%
Kfz-Fahrten / Spitzenstunde mittags	[Kfz/h]		2	0	0	0	1	0	0	0	0	4	0
Zielverkehr	[Kfz/h]		1	0	0	0	0	0	0	0	0	2	0
Quellverkehr	[Kfz/h]		1	0	0	0	1	0	0	0	0	2	0
Anteile Spitzenstunde nachmittags													
Zielverkehr	[%]		,8%	6,8%	6,8%	6,8%	6,8%	6,8%	6,8%	6,8%	6,8%	6,8%	6,8%
Quellverkehr	[%]	8.	,8%	8,8%	8,8%	8,8%	8,8%	8,8%	8,8%	8,8%	8,8%	8,8%	8,8%
Kfz-Fahrten / Spitzenstunde nachmittags	[Kfz/h]		1	0	0	0	0	0	0	0	0	2	0
Zielverkehr	[Kfz/h]		0	0	0	0	0	0	0	0	0	1	0
Quellverkehr	[Kfz/h]		1	0	0	0	0	0	0	0	0	1	0

				Bestand	d entfäl	lt													
		Kars	stadt	/Geso	hn- häfts- äude tstr.	geb	ltur- äude ststr.												
Gewerbenutzung		(Wa	ndel iren- us)		ndel infl.)	Ku	ltur												
Bruttogeschossfläche (BGF)	[m²]	11.	450	1	12	2	00												
Zimmeranzahl Hotel / Sitzplatzanzahl																			
Aufteilung (Filiale / Büroräume)		-		-		-													
m² BGF je Beschäftigtem	[m²/Pers.]	6	55	3	35	7	' 0												
Pkw je Zimmer (Hotel)	[Pkw/Zimmer]	_	_			-													
Beschäftigte	[Pers.]	1	76	;	3		3												
Beschäftigtenverkehr																			
Wege/Beschäftigtem	[Wege/Pers.]		,5			2,5					,5								
Anwesenheitsgrad	[%]		5%	85%															5%
Summe Wege	[Wege]	_	74		6		6												
		Zielv.	Binnen- v.	Zielv.	Binnen- v.	Zielv.	Binnen- v.												
Aufteilung Quell- und Zielv./Binnenv.	[%]	50%	50%	50%	50%	50%	50%												
Summe Wege Beschäftigte Q- u. Zv./Bv.	[Wege]	187	187	3	3	3	3												
MIV-Anteil	[%]		25%	50%	25%	50%	25%												
Beschäftigtenanteil (Hotel)	[%]			-		-	<u></u>												
Kfz-Besetzungsgrad	[Pers./Pkw]	- 1	,1		,1		,1												
Kfz-Fahrten / Tag (Ziel- und Quellverkehr)	[Kfz/24h]	1:	28	<u> </u>	2	<u> </u>	2												
Zielverkehr	[Kfz/24h]		<u></u> 64		 1		 1												
Quellverkehr	[Kfz/24h]	6	i4		1		1		1										
Anteile Spitzenstunde vormittags																			
Zielverkehr	[%]		4%		4%		0%												
Quellverkehr	[%]	-,	2%		2%		2%												
Kfz-Fahrten / Spitzenstunde vormittags	[Kfz/h]		3		0		0												
Zielverkehr Quellverkehr	[Kfz/h]		23		0		0												
Queliverkeni	[KīZ/N]	· '	J	<u>'</u>	<u> </u>	<u>'</u>	0												
Anteile Spitzenstunde mittags																			
Zielverkehr	[%])%		0%		9%												
Quellverkehr	[%]	,	3%		3%		3%												
Kfz-Fahrten / Spitzenstunde mittags	[Kfz/h]		2		0		0												
Zielverkehr	[Kfz/h]		1		0		0												
Quellverkehr	[Kfz/h]		1	'	J	'	U												
Anteile Spitzenstunde nachmittags																			
Zielverkehr	[%]	,	7%		7%	,	7%												
Quellverkehr	[%]		8%		8%		,8%												
Kfz-Fahrten / Spitzenstunde nachmittags	[Kfz/h]		1		0		0												
Zielverkehr	[Kfz/h]		1		0		0												
Quellverkehr	[Kfz/h]	1 1	0		0		0												

		Bestand er Wohn-				t					
		Kars	stadt	/Gesc	hn- häfts- äude tstr.	gebä	tur- äude tstr.				
Gewerbenutzung		(Wa	ndel iren- haus)		ndel infl.)	Ku	ltur				
Bruttogeschossfläche (BGF)	[m²]	11.	450	1.	12	20	00				
Zimmeranzahl Hotel / Sitzplatzanzahl	[]										
Aufteilung (Filiale / Büroräume)		-		-							
Verkaufsfläche (VKF)	[m²]	4.4	100	9	90						
m ² BGF je Beschäftigtem	[m²/Pers.]	6	55	3	35		0				
Pkw je Zimmer (Hotel)		-								-	
Beschäftigte	[Pers.]	10	09	3		(3				
Kundenverkehr					•						
Kunden/m² VKF	[Person/m ²]	-	,8	0	,8						
Kunden/m² BGF	[Person/m ²]		-				25				
Kunden/Sitzplatz											
Anzahl Kunden	[Pers.]		520		2		0				
Wege pro Kunde	[Wege/Pers.]		,0		,0		,0				
Kundenwege/Beschäftigtem	[Wege]										
Summe Wege	[Wege]		40 Binnen-		14		00 Binnen-				
		Zielv.	v.	Zielv.	Binnen- v.	Zielv.	V.				
Aufteilung Quell- und Zielv./Binnenv.	[%]	40%	60%	40%	60%	40%	60%				
Summe Wege Kunden Q- u. Zv./Bv.	[Wege]	2816	4224	58	86	40	60				
MIV-Anteil	[%]	50%	25%	50%	25%	50%	25%				
Kundenanteil (Hotel)											
Kfz-Besetzungsgrad	[Pers./Pkw]		,4		,4		,5				
Verbundeffekt	[%]	45	5%	45	5%	0'	%				
					_						
Kfz-Fahrten / Tag (Ziel- und Quellverkehr)	[Kfz/24h]		68		0		4				
Zielverkehr	[Kfz/24h]		84		0		2				
Quellverkehr	[Kfz/24h]	48	84	1	0	1	2				
Anteile Spitzenstunde vormittags											
Zielverkehr	[%]	5.0	9%	5.0	9%	0.0	0%				
LIGITORION	[/0]	J,	J / U		<i>J</i> /0	<u> </u>	J / U				

		Bestand entfällt Wohn- (Cooch #ths Kultur-					
		Karstadt	Wohn- /Geschäfts- gebäude Fuststr.	Kultur- gebäude Fuststr.			
Gewerbenutzung		Handel (Waren- /Kaufhaus)	Handel (kleinfl.)	Kultur			
Bruttogeschossfläche (BGF)	[m²]	11.450	112	200			
Beschäftigte	[Pers.]	176	3	3			
Wirtschaftsverkehr							
Lkw-Fahrten/Beschäftigtem	[Wege/Person]		0,6	0,3			
Lkw-Fahrten/100 qm BGF	[Wege/100m ² BGF]	0,28					
Summe Kfz-Fahrten	[Wege]	32	2	1			
Kfz-Fahrten / Tag (Ziel- und Quellverkehr)	[Kfz/24h]	32	2	2			
Zielverkehr	[Kfz/24h]	16	1	1			
Quellverkehr	[Kfz/24h]	16	1 1	_			
Anteile Spitzenstunde vormittags							
Zielverkehr	[%]	10,4%	10,4%	10,4%			
Quellverkehr	[%]	6,5%	6,5%	6,5%			
Kfz-Fahrten / Spitzenstunde vormittags	[Kfz/h]	3	0	0			
Zielverkehr	[Kfz/h]	2	0	0			
Quellverkehr	[Kfz/h]	1	0	0			
Antaila Onitana atum da mittana							
Anteile Spitzenstunde mittags Zielverkehr	F0/1	9,9%	9.9%	9,9%			
Quellverkehr	[%]	10.3%	10,3%	10,3%			
Kfz-Fahrten / Spitzenstunde mittags	[%] [Kfz/h]	10,3% 4	0	0			
Zielverkehr	[Kfz/h]	2	0	0			
Quellverkehr	[Kfz/h]	2	0	0			
		_		-			
Anteile Spitzenstunde nachmittags							
Zielverkehr	[%]	6,8%	6,8%	6,8%			
Quellverkehr	[%]	8,8%	8,8%	8,8%			
Kfz-Fahrten / Spitzenstunde nachmittags	[Kfz/h]	2	0	0			
Zielverkehr	[Kfz/h]	1	0	0			
Quellverkehr	[Kfz/h]	1	0	0			

	ı	Bestand	Bestand	<u> </u>
		(verbleibend)	(entfällt)	Neuverkehr
Wohnnutzung		Gutenberg- platz 1	Wohn-/ Geschäfts- gebäude Fuststraße	Fuststraße
Wohneinheiten (WE)	[m²]	1	14	10
Einwohner/WE	[m²/Pers.]	2,2	2,2	2,2
Bewohner	[Pers.]	2	31	22
Bewohnerverkehr				
Wege/Bewohner	[Wege/Pers.*24h]	3,5	3,5	3,5
Summe Wege Beschäftigte	[Wege]	7	109	77
Anzahl heimgebundener Wege	[%]	90%	90%	90%
Anzahl heimgebundener Wege	[Wege/24h]	6	98	69
MIV-Anteil	[%]	30%	30%	30%
Kfz-Besetzungsgrad	[Pers./Pkw]	1,25	1,25	1,25
Kfz-Fahrten / Tag (Ziel- und Quellverkehr)	[Kfz/24h]	2	24	18
Zielverkehr	[Kfz/24h]	1	12	9
Quellverkehr	[Kfz/24h]	1	12	9
Anteile Spitzenstunde vormittags				
Zielverkehr	[%]	4%	4%	4%
Quellverkehr	[%]	14%	14%	14%
Kfz-Fahrten / Spitzenstunde vormittags	[Kfz/h]	0	2	1
Zielverkehr	[Kfz/h]	0	0	0
Quellverkehr	[Kfz/h]	0	2	1
Anteile Spitzenstunde mittags				
Zielverkehr	[%]	15%	15%	15%
Quellverkehr	[%]	10%	10%	10%
Kfz-Fahrten / Spitzenstunde mittags	[Kfz/h]	0	3	2
Zielverkehr	[Kfz/h]	0	2	1
Quellverkehr	[Kfz/h]	0	1	1
Anteile Spitzenstunde nachmittags				
Zielverkehr	[%]	8%	8%	8%
Quellverkehr	[%]	7%	7%	7%
Kfz-Fahrten / Spitzenstunde nachmittags	[Kfz/h]	0	2	2
Zielverkehr	[Kfz/h]	0	1	1
Quellverkehr	[Kfz/h]	0	1	1


		Bestand (verbleibend)	Bestand (entfällt)	Neuverkehr
Wohnnutzung		Gutenberg- platz 1	Wohn-/ Geschäfts- gebäude Fuststraße	Fuststraße
Wohneinheiten (WE)	[m²]	1	14	10
Einwohner/WE	[m²/Pers.]	2,2	2,2	2,2
Bewohner	[Pers.]	2	31	22
December of the least				
Besucherverkehr		450/	450/	450/
Fahrtenzuschlag Besucher an Fahrten von Bewohnern	[%]	15%	15%	15%
Kfz-Fahrten / Tag (Ziel- und Quellverkehr)	[Kfz/24h]	0	4	4
Zielverkehr	[Kfz/24h]	0	2	2
Quellverkehr	[Kfz/24h]	0	2	2
Anteile Spitzenstunde vormittags				
Zielverkehr	[%]	2,0%	2,0%	2,0%
Quellverkehr	[%]	11,6%	11,6%	11,6%
Kfz-Fahrten / Spitzenstunde vormittags	[Kfz/h]	0	0	0
Zielverkehr	[Kfz/h]	0	0	0
Quellverkehr	[Kfz/h]	0	0	0
Anteile Spitzenstunde mittags				
Zielverkehr	[%]	2,1%	2,1%	2,1%
Quellverkehr	[%]	1,7%	1,7%	1,7%
Kfz-Fahrten / Spitzenstunde mittags	[Kfz/h]	0	0	0
Zielverkehr	[Kfz/h]	0	0	0
Quellverkehr	[Kfz/h]	0	0	0
Anteile Spitzenstunde nachmittags				
Zielverkehr	[%]	7,2%	7,2%	7,2%
Quellverkehr	[%]	1,5%	1,5%	1,5%
Kfz-Fahrten / Spitzenstunde nachmittags	[Kfz/h]	0	Ô	0
Zielverkehr	[Kfz/h]	0	0	0
Quellverkehr	[Kfz/h]	0	0	0

	ı	Bestand	Bestand	
		(verbleibend)	(entfällt)	Neuverkehr
		(verbleiberid)	,	Neuverkeni
			Wohn-/	
Wohnnutzung		Gutenberg-	Geschäfts-	Fuststraße
g		platz 1	gebäude	
			Fuststraße	
Wohneinheiten (WE)	[m²]	1	14	10
Einwohner/WE	[m²/Pers.]	2,2	2,2	2,2
Bewohner	[Pers.]	2	31	22
Wirtschaftsverkehr				
Kfz-Fahrten/Bewohner	[Fahrten/Pers.*24h]	0,1	0,1	0,1
Summe Kfz-Fahrten	[Wege]	Ó	3	2
	. 3 ,	-		
Kfz-Fahrten / Tag (Ziel- und Quellverkehr)	[Kfz/24h]	0	4	2
Zielverkehr	[Kfz/24h]	0	2	1
Quellverkehr	[Kfz/24h]	0	2	1
	pose m	Ť	_	•
Anteile Spitzenstunde vormittags				
Zielverkehr	[%]	10,4%	10,4%	10,4%
Quellverkehr	[%]	6,5%	6,5%	6,5%
Kfz-Fahrten / Spitzenstunde vormittags	[//0] [Kfz/h]	0,570	0,570	0,376
Zielverkehr	[Kfz/h]	0	0	0
Quellverkehr	[Kfz/h]	0	0	0
Queliverkerii	[KIZ/II]	U	0	U
Anteile Spitzenstunde mittags				
Zielverkehr	1,70	9,9%	9.9%	9,9%
Quellverkehr	[%]	10,3%	10,3%	10,3%
Kfz-Fahrten / Spitzenstunde mittags		0	0	0
Zielverkehr	[Kfz/h] [Kfz/h]	0	0	0
Quellverkehr		0	0	0
Queliverkerii	[Kfz/h]	U	U	U
Anteile Spitzenstunde nachmittags				
Zielverkehr	70/3	6,8%	6,8%	6,8%
	[%]		8,8%	
Quellverkehr	[%]	8,8% 0	8,8% 0	8,8% 0
Kfz-Fahrten / Spitzenstunde nachmittags	[Kfz/h]			<u> </u>
Zielverkehr	[Kfz/h]	0	0	0
Quellverkehr	[Kfz/h]	0	0	0
de con Caburam codo bra antail (> 2 E t)	50/3	250/	0.50/	050/
davon Schwerverkehrsanteil (> 3,5 t)	[%]	25%	25%	25%
Lkw-Fahrten / Tag (Ziel- und Quellverkehr)	[Lkw/24h]	0	2	0
Zielverkehr	[Lkw/24h]	0	1	0
Quellverkehr	[Lkw/24h]	0	1	0
Quontonton	[LIXW/Z-TI]	<u> </u>	'	<u> </u>
Lkw-Fahrten / Spitzenstunde vormittags	[Lkw/h]	0	0	0
Zielverkehr	[Lkw/h]	0	0	0
Quellverkehr	[Lkw/h]	0	0	0
	<u> </u>	-	-	-
Lkw-Fahrten / Spitzenstunde mittags	[Lkw/h]	0	0	0
Zielverkehr	[Lkw/h]	0	0	0
Quellverkehr	[Lkw/h]	0	0	0
	[Essaying	•		<u> </u>
Lkw-Fahrten / Spitzenstunde nachmittags	[Lkw/h]	0	0	0
Zielverkehr	[Lkw/h]	0	0	0
Quellverkehr	[Lkw/h]	0	0	0
	[[EKWII]	J		•

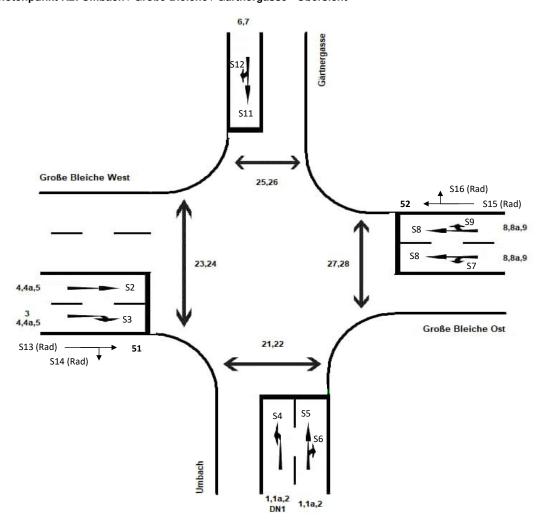
Knotenpunkt K1: Große Langgasse / Ludwigsstr. / Weißliliengasse - Übersicht

Knotenpunkt K1: Große Langgasse / Ludwigsstr. / Weißliliengasse - vormittägliche Spitzenstunde

Formb	latt 3				Knotenpunk	t mit Lichtsig	nalanlage			
Politic	natt 5				Berechnung	der Verkehrs	squalitäten			
	Projek	t Mainz Verke	hrsgutachter	BLU				Stadt:		
K	Cnotenpunk	t K1: Große Li	anggasse / L	udwigsstr. / \	Weißliliengas:	se, Bestand		Datum: (04.10.2021	
Z	eitabschnit	t SpHAM						Bearbeiter:		
(fz-Verkeh	rsströme -	Verkehrsqua	litäten (fahr	streifenbezo	gen)					
Nr.	Bez	Ströme	\mathbf{q}_{j}	\mathbf{x}_{j}	$f_{A,j}$	$N_{GE,j}$	N _{MS,j}	L 95,j	t _{W,j}	QSV
	SG		[Kfz/h]	[-]	[-]	[Kfz]	[Kfz]	[m]	[s]	[-]
11	1-2	1, 2, 3	53	0,147	0,25	0,096	0,899	20	21,4	В
21	7-8	6	36	0,082	0,36	0,049	0,510	14	15,1	A
22	7-8	4, 5, 6	193	0,234	0,42	0,173	2,597	32	13,9	Α
31	5-6	7, 8, 9	67	0,210	0,23	0,150	1,202	26	23,4	В
41	3-4	10, 11, 12	235	0,293	0,41	0,237	3,294	39	14,8	Α
Gesamt			584						16,1	
ußgänger	- /Radfahr	erfurten								
Zufahrt	Bez. SG	q _{Fg} [Fg/h]	q _{Rad} [Rad/h]	Anzahl Furten	t _{W,max} [s]					QSV [-]
1	21-22	100	0	1	44					C
2	27-28	100	0	1	55					С
3	25-26	100	0	1	44					C
4	23-24	100	0	1	49					С
								Gesamtbe	wert ing:	С

Knotenpunkt K1: Große Langgasse / Ludwigsstr. / Weißlilliengasse - mittägliche Spitzenstunde

Form	Just 0					t mit Lichtsig				
					Berechnung	der Verkehrs	squalitäten			
	Projek	t: Mainz Verke	hrsgutachter	BLU				Stadt:_		
		t: K1: Große L		_	Veißliliengas	se, Bestand		Datum: (04.10.2021	
Z	eitabschnit	t: mittägliche S	pitzenstunde	9				Bearbeiter:		
(fz-Verkel	rsströme -	Verkehrsqua	litäten (fahr	streifenbezo	gen)					
Nr.	Bez	Ströme	q	×	f _{A,j}	N _{GEJ}	N _{MSJ}	L 95,j	t _{w.j}	QSV
141.	SG		[Kfz/h]	[-]	[-]	[Kfz]	[Kfz]	[m]	[s]	[-]
11	1-2	1, 2, 3	70	0,194	0,25	0,136	1,212	24	22,2	В
21	7-8	6	27	0,061	0,36	0,036	0,378	12	14,9	Α
22	7-8	4, 5, 6	230	0,276	0,42	0,218	3,153	37	14,3	Α
31	5-6	7, 8, 9	73	0,231	0,23	0,170	1,324	28	23,8	В
41	3-4	10, 11, 12	254	0,303	0,43	0,250	3,504	40	14,3	Α
	50									
				92						
Gesamt			654						16,2	
ußgänger	- /Radfahr	erfurten				477.33	500	19:17	100	
Zufahrt	Bez.	Q _{Fg}	q _{Rad}	Anzahl	t _{W,max}					QSV
Zuidilit	SG	[Fg/h]	[Rad/h]	Furten	[s]					[-]
1	21-22	100	0	1	44					C
2	27-28	100	0	1	55					C
3	25-26	100	0	1	44					С
4	23-24	100	0	1	49					C
								Gesamtbe	ewerting.	С



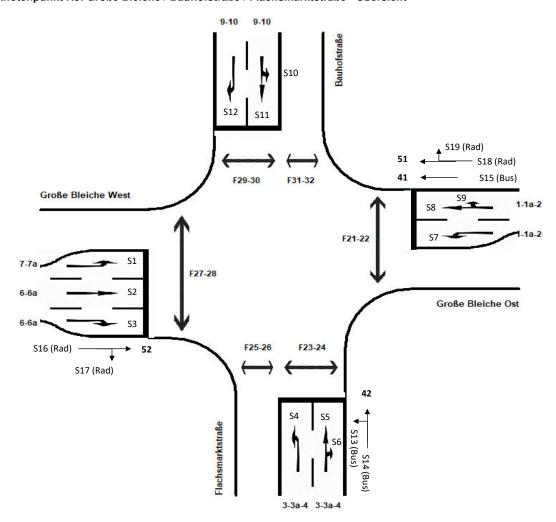
Knotenpunkt K1: Große Langgasse / Ludwigsstr. / Weißlilliengasse - nachmittägliche Spitzenstunde

latt 3					t mit Lichtsig				
				Berechnung	der Verkehrs	squalitäten			
Projek	t: Mainz Verke	hrsgutachter	BLU				Stadt:_		
notenpunk	t: K1: Große Li	anggasse / L	udwigsstr. / \	Veißliliengas	se, Bestand		Datum: (04.10.2021	
eitabschnit	t: SpHPM						Bearbeiter:		
rsströme -	Verkehrsqua	litäten (fahr	streifenbezo	gen)					
Bez	Ströme	q	×	fAJ	N _{GEJ}	N _{MS,j}	L 95,j	t _{w,j}	QSV
SG		[Kfz/h]	[-]	[-]	[Kfz]	[Kfz]	[m]	[s]	[-]
1-2	1, 2, 3	59	0,124	0,33	0,079	0,995	22	19,3	Α
7-8	6	26	0,066	0,32	0,039	0,439	13	19,1	Α
7-8	4, 5, 6	262	0,356	0,37	0,321	4,536	49	19,8	Α
5-6	7, 8, 9	72	0,183	0,29	0,126	1,325	28	22,4	В
3-4	10, 11, 12	312	0,389	0,41	0,373	5,268	55	18,5	Α
_									
9	1	731						10.4	
/Padfahr	erfurten	751						10,4	
430	1	On .	Anzahl	t	Т	T	T	T	QSV
	The state of the s	20-20-20-20-20-20-20-20-20-20-20-20-20-2	0/4/1/20						[-]
		•	1020.0000	-	-		-		C
	1000			0000			-		D
	-		-				+		D
23-24	100	0	1	50					С
	1		7	-			Gesamthe	ewertung:	D
	reitabschnit reströme Bez. SG 1-2 7-8 7-8 5-6 3-4	reströme - Verkehrsqua Bez. Ströme SG 1-2 1, 2, 3 7-8 6 7-8 4, 5, 6 5-6 7, 8, 9 3-4 10, 11, 12 -/Radfahrerfurten Bez. Q _{Fg} SG [Fg/h] 21-22 100 27-28 100 25-26 100	reströme - Verkehrsqualitäten (fahr Bez. Ströme q _j [Kfz/h] 1-2 1, 2, 3 59 7-8 6 26 7-8 4, 5, 6 262 5-6 7, 8, 9 72 3-4 10, 11, 12 312 - /Radfahrerfurten Bez. q _{Fg} q _{Rad} [Rad/h] 21-22 100 0 27-28 100 0 25-26 100 0	reströme - Verkehrsqualitäten (fahrstreifenbezon Ströme - Verkehrsqualitäten (fahrstreifenbezon Ströme	Part Part	Ströme - Verkehrsqualitäten (fahrstreifenbezogen) Bez	Serial	Bearbeiter: syströme - Verkehrsqualitäten (fahrstreifenbezogen) Bez Ströme q _j x _j f _{A,j} N _{GE,j} [Kfz] [m] 1-2	Bearbeiter: Bearbeiter:

Knotenpunkt K2: Umbach / Große Bleiche / Gärtnergasse - Übersicht

Knotenpunkt K2: Umbach / Große Bleiche / Gärtnergasse - vormittägliche Spitzenstunde

Form	blatt 3				Knotenpunk	t mit Lichtsig	nalanlage			
Form	Diatt 3				Berechnung	der Verkehrs	squalitäten			
	Projekt:	Mainz Verke	hrsgutachter	BLU				Stadt:		
	Knotenpunkt:	K2: Umbach	/ Große Blei	che / Gärtne	rgasse, Besta	and		Datum: (07.10.2021	
7	Zeitabschnitt:	SpHAM						Bearbeiter:		
Kfz-Verke	hrsströme - \	Verkehrsqua	litäten (fahr	streifenbezo	ogen)					
Nr.	Bez	Ströme	q	x _j	f _{A,j}	N _{GEJ}	N _{MS,j}	L 95,j	t _{w,j}	QSV
141.	SG		[Kfz/h]	[-]	[-]	[Kfz]	[Kfz]	[m]	[s]	[-]
11	3+4,4a,5	3	227	0,340	0,38	0,298	3,457	40	17,2	A
12	4,4a,5	2	314	0,519	0,31	0,659	5,663	60	23,6	В
21	1,1a,2	5, 6	98	0,222	0,24	0,161	1,687	23	22,5	В
22	1,1a,2	4	89	0,199	0,24	0,140	1,516	22	22,2	В
31	8,8a,9	8, 9	175	0,273	0,34	0,215	2,697	34	18,1	A
32	8,8a,9	7,8	113	0,343	0,18	0,302	2,226	29	28,5	В
41	6,7	11, 12	167	0,509	0,17	0,627	3,578	41	33,3	В
5 (Rad)	51	13, 14	100						58,0	D
7 (Rad)	52	15, 16	100						48,0	С
Gesamt			1183						23,2	
Fußgänge	r- /Radfahrer	furten				190 h	120	307,010	200	
Zufahrt	Bez. SG	q _{Fg} [Fg/h]	q _{Rad} [Rad/h]	Anzahl Furten	t _{W,max}					QSV [-]
1	23,24	100	0	1	61					D
2	21,22	100	0	1	58					D
3	27,28	100	0	1	59					D
4	25,26	100	0	1	49					C
								Gesamtb	ewertung.	D



Knotenpunkt K2: Umbach / Große Bleiche / Gärtnergasse - nachmittägliche Spitzenstunde

Form	blatt 3				Knotenpunk	t mit Lichtsig	nalanlage			
Form	Diatt 3				Berechnung	der Verkehrs	squalitäten			
	Projekt:	Mainz Verke	hrsgutachter	BLU				Stadt		
	Knotenpunkt:	K2: Umbach	/ Große Blei	che / Gärtner	rgasse, Besta	and		Datum: (07.10.2021	
	Zeitabschnitt:	SpHPM						Bearbeiter:		
Kfz-Verke	hrsströme - \	Verkehrsqua	litäten (fahr	streifenbezo	ogen)					
Nr.	Bez.	Ströme	q	× _j	f _{A,j}	N _{GEJ}	N _{MS,j}	L 95,j	t _{w.j}	QSV
18.55.6	SG		[Kfz/h]	[-]	[-]	[Kfz]	[Kfz]	[m]	[s]	[-]
11	3+4,4a,5	3	184	0,276	0,38	0,218	2,710	33	16,4	Α
12	4,4a,5	2	372	0,615	0,31	1,026	7,175	73	26,5	В
21	1,1a,2	5, 6	156	0,353	0,24	0,316	2,828	35	24,5	В
22	1,1a,2	4	160	0,357	0,24	0,322	2,901	35	24,6	В
31	8,8a,9	8, 9	301	0,467	0,34	0,526	5,119	56	21,1	В
32	8,8a,9	7, 8	170	0,466	0,20	0,520	3,445	40	30,0	В
41	6,7	11, 12	192	0,613	0,16	1,003	4,473	49	38,7	С
5 (Rad)	51	13, 14	100						58,0	D
7 (Rad)	52	15, 16	100					-	48,0	С
Gesamt		71	1535						25,7	
ußgänge	r- /Radfahrer	furten	70			777		2000	100	
Zufahrt	Bez. SG	q _{Fg} [Fg/h]	q _{Rad} [Rad/h]	Anzahl Furten	t _{W,max}					QSV [-]
1	23,24	100	0	1	61					D
2	21,22	100	0	1	58					D
3	27,28	100	0	1	59					D
4	25,26	100	0	1	49					C
	,							Gesamtb	ewertung.	D

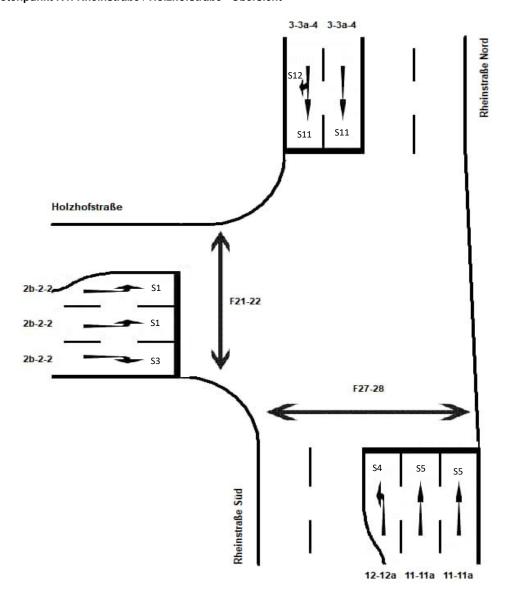
Knotenpunkt K3: Große Bleiche / Bauhofstraße / Flachsmarktstraße - Übersicht

Knotenpunkt K3: Große Bleiche / Bauhofstraße / Flachsmarktstraße - vormittägliche Spitzenstunde

Form	nblatt 3				Knotenpunk	t mit Lichtsig	nalanlage			
rom	ibiatt 5				Berechnung	der Verkehrs	squalitäten			
	Projekt: N	Mainz Verke	hrsgutachter	BLU				Stadt:_		
	Knotenpunkt: K	3: Große B	lleiche / Bauh	ofstraße / Fl	achsmarktstr	aße, Bestand	t	Datum: 0	07.10.2021	
	Zeitabschnitt: S							Bearbeiter:		
Kfz-Verke	ehrsströme - V	erkehrsqua	alitäten (fahr	streifenbezo	ogen)					
Nr.	Bez. SG	Ströme	q _j [Kfz/h]	x _j [-]	f _{A,j} [-]	N _{GE,j} [Kfz]	N _{MS,j} [Kfz]	L _{95,j} [m]	t _{w.i} [s]	QSV [-]
11	6-6a	3	44	0,324	0,08	0,273	1,308	21	46,0	С
12	6-6a	2	214	0,355	0,31	0,319	4,462	50	25,9	В
13	7-7a	1	30	0,150	0,10	0,099	0,784	14	38,8	С
21	3-3a-4	5, 6	142	0,495	0,15	0,588	3,843	45	42,4	С
22	3-3a-4	4	169	0,589	0,16	0,892	4,820	52	46,5	C
31	1-1a-2	8, 9	87	0,410	0,11	0,407	2,434	31	44,3	С
32	1-1a-2	7	18	0,112	0,08	0,070	0,488	10	40,0	C
41	9-10	12	51	0,180	0,15	0,123	1,238	19	35,1	С
42	9-10	10, 11	245	0,636	0,20	1,129	6,743	69	43,5	C
6 (ÖV)	Bus42	14, 13	10						53,3	E
7 (ÖV)	Bus41	15	5						53,3	E
9 (Rad)	Rad52	16, 17	62						80,0	E
11 (Rad)	Rad51	18, 19	37						74,0	Е
Gesamt			1000					+	39,6	
Fußgäng	er- /Radfahrerf	urten					*			
Zufahrt	Bez. SG	q _{Fg} [Fg/h]	q _{Rad} [Rad/h]	Anzahl Furten	t _{W,max} [s]					QSV [-]
1	F27-28	100	0	1	80					E
2	F23-24	100	0	1	73	12		84		Е
2	F25-26	100	0	1	80					Е
3	F21-22	100	0	1	80					Е
4	F29-30	100	0	1	73					Е
4	F31-32	100	0	1	76					Е
2	F23-24+F25-26	100	0	2	80					Е
221	F29-30+F31-32		0	2	76					Е
								Casas II		E
								Gesamtbe	eweitung.	E

Knotenpunkt K3: Große Bleiche / Bauhofstraße / Flachsmarktstraße - nachmittägliche Spitzenstunde

Form	mblatt 3					t mit Lichtsig				
1/2/2014	Market Control				Berechnung	der Verkehrs	squalitäten			
	Projekt: N	Mainz Verke	hrsgutachter	BLU				Stadt:_		
	Knotenpunkt: k	NA INCOMPANY IN CO.	leiche / Baut	nofstraße / Fl	achsmarktstr	aße, Bestand	i	-	04.10.2021	
	Zeitabschnitt: S	SpHPM						Bearbeiter:		
Kfz-Verk	ehrsströme - V	erkehrsqua	litäten (fahr	streifenbezo	ogen)					
Nr.	Bez. SG	Ströme	q _j [Kfz/h]	x _j [-]	f _{A,j} [-]	N _{GE,J} [Kfz]	N _{MS,j} [Kfz]	L _{95,j} [m]	t _{w.j} [s]	QSV [-]
11	6-6a	3	42	0,311	0,08	0,258	1,245	20	45,6	C
12	6-6a	2	224	0,371	0,31	0,343	4,705	52	26,2	В
13	7-7a	1	31	0,155	0,10	0,103	0,811	14	38,9	C
21	3-3a-4	5, 6	182	0,639	0,15	1,129	5,402	58	50,1	D
22	3-3a-4	4	229	0,801	0,16	2,864	8,386	81	72,7	E
31	1-1a-2	8, 9	167	0,803	0,11	2,726	6,801	71	86,3	E
32	1-1a-2	7	23	0,143	0,08	0,093	0,628	12	40,6	С
41	9-10	12	110	0,385	0,15	0,364	2,848	34	39,2	C
42	9-10	10, 11	243	0,633	0,20	1,109	6,672	69	43,4	C
6 (ÖV)	Bus42	14, 13	10						53,3	E
7 (ÖV)	Bus41	15	5						53,3	E
9 (Rad)	Rad52	16, 17	70						80,0	E
11 (Rad)	Rad51	18, 19	63						74,0	E
Gesamt			1251						51,9	
Fußgäng	er-/Radfahrerf	urten						30.000		
Zufahrt	Bez. SG	q _{Fg} [Fg/h]	q _{Rad} [Rad/h]	Anzahl Furten	t _{W,max}					QSV [-]
1	F27-28	100	0	1	80					Е
2	F23-24	100	0	1	73					Е
2	F25-26	100	0	1	80					Е
3	F21-22	100	0	1	80					E
4	F29-30	100	0	1	73					E
4	F31-32	100	0	1	76					E
2	F23-24+F25-26	100	0	2	80					E
4	F29-30+F31-32	100	0	2	76					Е
								Gesamtb	ewertung:	E



Knotenpunkt K3: Große Bleiche / Bauhofstraße / Flachsmarktstraße - nachmittägliche Spitzenstunde angepasst

For	mblatt 3				Knotenpunk	t mit Lichtsig	nalanlage			
FOI	indiatt 3				Berechnung	der Verkehr:	squalitäten			
	Projekt: N	Mainz Verke	hrsgutachter	BLU				Stadt:_		
	Knotenpunkt: K	Control of the Contro	leiche / Baut	nofstraße / Fl	achsmarktstr	aße, Bestand	d .		04.10.2021	
	Zeitabschnitt: S	SpHPM						Bearbeiter:		
Kfz-Verk	ehrsströme - Vo	erkehrsqua	alitäten (fahr	streifenbez	ogen)					
Nr.	Bez. SG	Ströme	q _j [Kfz/h]	× _j [-]	f _{A,j} [-]	N _{GEJ} [Kfz]	N _{MS,j} [Kfz]	L _{95,j} [m]	t _{w.j} [s]	QSV [-]
11	6-6a	3	42	0,311	0,08	0,258	1,245	20	45,6	C
12	6-6a	2	224	0,371	0,31	0,343	4,705	52	26,2	В
13	7-7a	1	31	0,155	0,10	0,103	0,811	14	38,9	C
21	3-3a-4	5, 6	182	0,595	0,16	0,919	5,136	56	45,7	С
22	3-3a-4	4	229	0,748	0,17	2,058	7,509	74	59,9	D
31	1-1a-2	8, 9	167	0,732	0,12	1,817	5,844	63	66,9	D
32	1-1a-2	7	23	0,135	0,09	0,087	0,619	12	40,0	C
41	9-10	12	110	0,451	0,13	0,485	3,033	36	43,6	С
42	9-10	10, 11	243	0,713	0,18	1,681	7,401	75	52,6	D
6 (ÖV)	Bus42	14, 13	10						53,3	Е
7 (ÖV)	Bus41	15	5						53,3	Е
9 (Rad)	Rad52	16, 17	70						81,0	Е
11 (Rad)	Rad51	18, 19	63						76,0	E
Gesamt			1251						48,5	
Fußgäng	jer-/Radfahrerf	urten	99	722		30.00	100	3000		
Zufahrt	Bez. SG	q _{Fg} [Fg/h]	q _{Rad} [Rad/h]	Anzahl Furten	t _{W,max}					QSV [-]
1	F27-28	100	0	1	82					E
2	F23-24	100	0	1	73					Е
2	F25-26	100	0	1	80					Е
3	F21-22	100	0	1	80					E
4	F29-30	100	0	1	73					Е
4	F31-32	100	0	1	76					Е
2	F23-24+F25-26	100	0	2	80					Е
4	F29-30+F31-32	100	0	2	76					Е
								Gocamb	ewertung:	E
								Ocsaille	owortung.	_

Knotenpunkt K4: Rheinstraße / Holzhofstraße - Übersicht

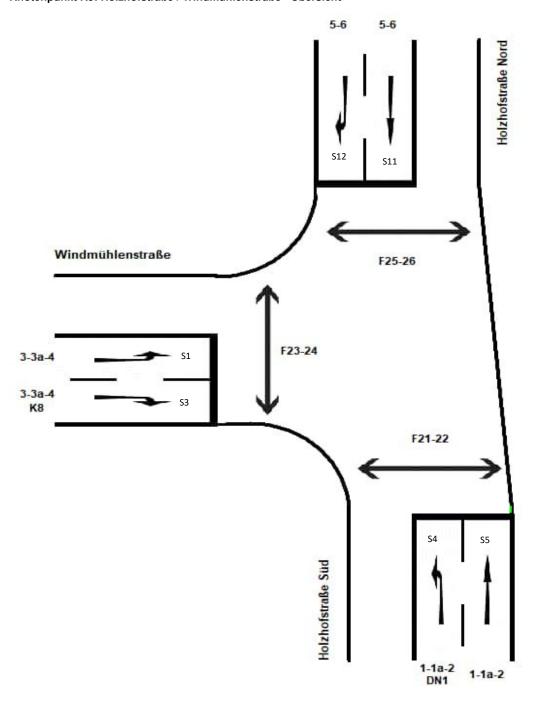
Knotenpunkt K4: Rheinstraße / Holzhofstraße - vormittägliche Spitzenstunde

Form	nblatt 3				Knotenpunk	t mit Lichtsig	nalanlage			
Form	ibiatt 5				Berechnung	der Verkehrs	squalitäten			
	Projekt: I	Mainz Verke	hrsgutachter	BLU				Stadt:_		
	Knotenpunkt: I	K4: Rheinstr	aße / Holzho	fstraße, Best	and			Datum: 0	06.10.2021	
	Zeitabschnitt:	SpHAM						Bearbeiter:		
(fz-Verke	hrsströme - V	erkehrsqua	litäten (fahr	streifenbezo	gen)					
Nr.	Bez.	Ströme	$\mathbf{q}_{\mathbf{j}}$	x_j	$f_{A,j}$	N _{GE,j}	N _{MS,j}	L 95,j	t _{w.j}	QSV
41.77	SG		[Kfz/h]	[-]	[-]	[Kfz]	[Kfz]	[m]	[s]	[-]
11	KRa1+2b-2-2	3	150	0,277	0,30	0,218	3,067	37	25,2	В
12+13	2b-2-2	1	360	0,613	0,30	1,018	8,760	83	33,5	В
12	2b-2-2	1	180	0,583	0,16	0,868	5,047	54	45,4	C
13	2b-2-2	1	180	0,583	0,16	0,868	5,047	54	45,4	C
21	11-11a	5	460	0,735	0,32	1,994	12,206	112	38,5	C
22	11-11a	5	460	0,735	0,32	1,994	12,206	112	38,5	С
23	12-12a	4	300	0,773	0,20	2,479	9,577	92	57,1	D
41	3-3a-4	11, 12	321	0,533	0,32	0,702	7,305	72	29,5	В
42	3-3a-4	11	379	0,532	0,37	0,701	8,157	80	26,0	В
Gesamt			2430						37,9	
ußgänge	er- /Radfahren	furten					90	760		
7. dalas	Bez.	q_{Fg}	q _{Rad}	Anzahl	t _{W,max}					QSV
Zufahrt	SG	[Fg/h]	[Rad/h]	Furten	[s]					[-]
1	F21-22	100	0	1	80					Е
2	F27-28	100	0	1	79					Е
								Gesamtbe	ewerting.	E

Knotenpunkt K4: Rheinstraße / Holzhofstraße - nachmittägliche Spitzenstunde

Form	nblatt 3				Knotenpunk	t mit Lichtsig	nalanlage			
FOIII	ibiatt 3				Berechnung	der Verkehrs	squalitäten			
	Projekt:	Mainz Verke	hrsgutachter	BLU				Stadt		
	Knotenpunkt:	K4: Rheinstr	aße / Holzho	fstraße, Best	and			Datum: 0	06.10.2021	
	Zeitabschnitt:	SpHPM						Bearbeiter:		
Kfz-Verke	ehrsströme - V	erkehrsqua	alitäten (fahr	streifenbezo	gen)					
Ne	Bez.	Ströme	q	× _j	f _{A,j}	N _{GEJ}	N _{MS,j}	L _{95,j}	t _{w.j}	QSV
Nr.	SG		[Kfz/h]	[-]	[-]	[Kfz]	[Kfz]	[m]	[s]	[-]
11	KRa1+2b-2-2	3	320	0,821	0,22	3,512	11,975	110	69,6	D
12+13	2b-2-2	1	360	0,682	0,27	1,445	10,411	96	42,7	С
12	2b-2-2	1	180	0,647	0,14	1,178	5,906	61	55,9	D
13	2b-2-2	1	180	0,647	0,14	1,178	5,906	61	55,9	D
21	11-11a	5	380	0,529	0,37	0,689	8,955	87	28,1	В
22	11-11a	5	380	0,529	0,37	0,689	8,955	87	28,1	В
23	12-12a	4	280	1,029	0,14	13,700	21,478	181	224,5	F.
41	3-3a-4	11, 12	587	0,716	0,43	1,789	15,232	133	31,4	В
42	3-3a-4	11	653	0,715	0,47	1,788	16,270	143	28,2	В
						-				
Gesamt			2960						55,2	
Fußgäng	er- /Radfahrer	furten								
7.6.1.1	Bez.	q_{Fg}	q _{Rad}	Anzahl	t _{W,max}					QSV
Zufahrt	SG	[Fg/h]	[Rad/h]	Furten	[s]					[-]
1	F21-22	100	0	1	92					F
2	F27-28	100	0	1	89					F
				:				Gesamtb	august mar	F
								Gesaillib	ewertung.	1

Der kurze Aufstellstreifen kann den Verkehr nicht komplett aufnehmen. Die Auswirkungen auf den angrenzenden Fahrstreifen können nach HBS2015 nicht berücksichtigt werden.



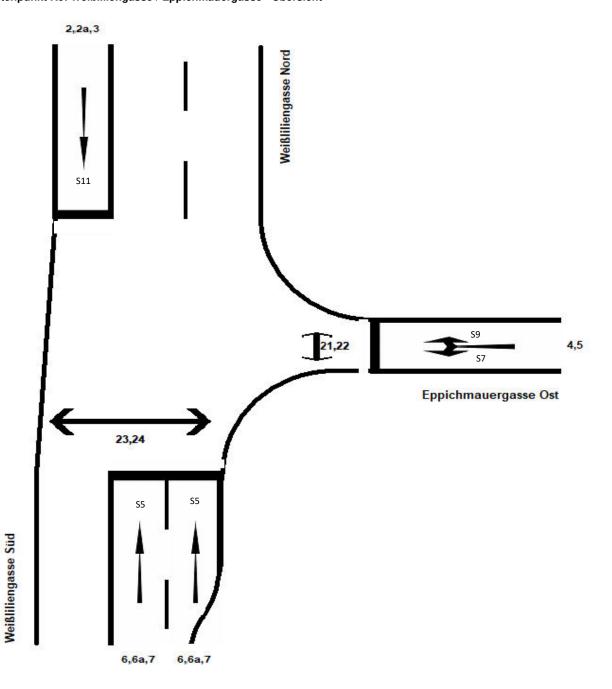
Knotenpunkt K4: Rheinstraße / Holzhofstraße - nachmittägliche Spitzenstunde angepasst

Form	blatt 3				Knotenpunk	t mit Lichtsig	nalanlage			
Foili	ibiatt 5				Berechnung	der Verkehrs	squalitäten			
	Projekt: N	Mainz Verke	hrsgutachter	BLU				Stadt:_		
	Knotenpunkt: I	K4: Rheinstr	aße / Holzho	fstraße, Best	and			Datum: (06.10.2021	
	Zeitabschnitt: 8	SpHPM						Bearbeiter:		
Kfz-Verke	hrsströme - V	erkehrsqua	litäten (fahr	streifenbezo	gen)		-	-		
Nr.	Bez.	Ströme	q	×	f _{A,J}	N _{GE,j}	N _{MS,j}	L 95.j	twj	QSV
141.	SG		[Kfz/h]	[-]	[-]	[Kfz]	[Kfz]	[m]	[s]	[-]
11	KRa1+2b-2-2	3	320	0,821	0,22	3,512	11,975	110	69,6	D
12+13	2b-2-2	1	360	0,682	0,27	1,445	10,411	96	42,7	C
12	2b-2-2	1	180	0,647	0,14	1,178	5,906	61	55,9	D
13	2b-2-2	1	180	0,647	0,14	1,178	5,906	61	55,9	D
21	11-11a	5	380	0,529	0,37	0,689	8,955	87	28,1	В
22	11-11a	5	380	0,529	0,37	0,689	8,955	87	28,1	В
23	12-12a	4	280	0,800	0,18	2,951	10,402	98	69,6	D
41	3-3a-4	11, 12	585	0,749	0,41	2,217	16,070	139	35,5	С
42	3-3a-4	11	655	0,749	0,45	2,235	17,335	151	32,0	В
				0.1						
Gesamt			2960						42,2	
Fußgänge	er- /Radfahrerf	furten			1111		300			
Zufahrt	Bez.	q_{Fg}	q _{Rad}	Anzahl	t _{w,max}					QSV
Zulanrt	SG	[Fg/h]	[Rad/h]	Furten	[s]					[-]
1	F21-22	100	0	1	92					F
2	F27-28	100	0	1	89					F
							-	Gesamtbe	owertung:	F

Knotenpunkt K5: Holzhofstraße / Windmühlenstraße - Übersicht

Knotenpunkt K5: Holzhofstraße / Windmühlenstraße - vormittägliche Spitzenstunde

Formblatt 3		Knotenpunkt mit Lichtsignalanlage Berechnung der Verkehrsqualitäten									
											Projekt: Mainz Verkehrsgutachten BLU
Knotenpunkt: K5: Holzhofstraße / Windmühlenstraße, Bestand Zeitabschnitt: SpHAM								Datum: 06.10.2021 Bearbeiter:			
											Kfz-Verke
Nr.	Bez. SG	Ströme	q _j [Kfz/h]	x _j	f _{A,j}	N _{GE,j} [Kfz]	N _{MS,j} [Kfz]	L _{95,j} [m]	t _{W.j} [s]	QSV [-]	
11	3-3a-4+K8	3	481	0.647	0.41	1,208	8,689	83	22.2	В	
12	3-3a-4	1	187	0,335	0,29	0,290	3,149	37	21,4	В	
21	1-1a-2	5	333	0,391	0,43	0,377	4,824	52	15,3	Α	
22	1-1a-2	4	222	0,475	0,25	0,543	4,210	46	26,4	В	
41	5-6	12	82	0,224	0,19	0,163	1,512	22	25,6	В	
42	5-6	11	158	0,349	0,23	0,310	2,885	35	25,1	В	
Gesamt			1463						21,7		
ußgänge	r- /Radfahrer	furten									
Zufahrt	Bez. SG	q _{Fg} [Fg/h]	q _{Rad} [Rad/h]	Anzahl Furten	t _{W,max}					QSV [-]	
1	F23-24	100	0	1	61					D	
2	F21-22	100	0	1	61					D	
4	F25-26	100	0	1	60					D	
								Gesamtbewertung:		D	



Knotenpunkt K5: Holzhofstraße / Windmühlenstraße - nachmittägliche Spitzenstunde

Form	blatt 3				Knotenpunk	t mit Lichtsig	nalanlage			
Form	ibiatt 5				Berechnung	der Verkehrs	squalitäten			
	Projekt:	Mainz Verke	hrsgutachter	BLU				Stadt:		
	Knotenpunkt_	K5: Holzhofs	traße / Wind	mühlenstraße	e, Bestand			Datum:	06.10.2021	
	Zeitabschnitt:	SpHPM						Bearbeiter:		
Kfz-Verke	hrsströme - \	/erkehrsqua	litäten (fahr	streifenbezo	gen)					
Nr.	Bez.	Ströme	q	× _j	f _{A,j}	N _{GE,j}	N _{MS,j}	L _{95,j}	twj	QSV
141.	SG		[Kfz/h]	[-]	[-]	[Kfz]	[Kfz]	[m]	[s]	[-]
11	3-3a-4+K8	3	348	0,455	0,42	0,500	6,015	61	18,8	A
12	3-3a-4	1	122	0,365	0,17	0,334	2,727	33	32,8	В
21	1-1a-2	5	217	0,190	0,57	0,132	2,434	31	8,5	Α
22	1-1a-2	4	353	0,546	0,35	0,743	7,042	70	25,0	В
41	5-6	12	176	0,410	0,22	0,409	3,754	43	30,0	В
42	5-6	11	254	0,488	0,26	0,576	5,352	56	29,0	В
						-		-		
		200								
Gesamt			1470						23,0	
	er- /Radfahrer	furton	1470						23,0	
usgange		175.50		Anzahl			T	T	T	QSV
Zufahrt	Bez. SG	q _{Fg} [Fg/h]	q _{Rad} [Rad/h]	Furten	t _{W,max} [s]					QSV [-]
1	F23-24	100	0	1	70				-	D
2	F21-22	100	0	1	69					D
4	F25-26	100	0	1	70					D
1000										
								Gesamtb	ewertung:	D

Knotenpunkt K6: Weißliliengasse / Eppichmauergasse - Übersicht

Knotenpunkt K6: Weißlilliengasse / Epppichmauergasse - vormittägliche Spitzenstunde

Form	olatt 3	Ī			Knotenpunk	t mit Lichtsig	ınalanlage			
FOITIL	natt 5				Berechnung	der Verkehrs	squalitäten			
	Projekt	: Mainz Verke	hrsgutachter	n BLU				Stadt:_		
	•	: K6: Weißlilie	engasse / Ep	pichmauerga	sse, Bestand			Datum:_	11.05.2023	
	eitabschnitt							Bearbeiter:		
Kfz-Verkeh	rsströme -	Verkehrsqua	alitäten (fah	rstreifenbez	ogen)					
Nr.	Bez. SG	Ströme	q _j [Kfz/h]	x _j [-]	f _{A,j} [-]	N _{GE,j} [Kfz]	N _{MS,j} [Kfz]	L _{95,j} [m]	t _{W,j} [s]	QSV [-]
21	6,6a,7	5	153	0,183	0,43	0,126	2,481	32	16,2	A
22+21	6,6a,7	5	307	0,299	0,48	0,245	4,872	54	14,8	Α
22	6,6a,7	5	154	0,185	0,43	0,127	2,499	32	16,3	Α
31	4,5	7, 9	16	0,067	0,14	0,040	0,386	9	34,0	В
41	2,2a,3	11	184	0,177	0,54	0,120	2,439	32	10,7	Α
5 (ÖV)	41	13	10						15,0	В
Gesamt			517	0,178					14,8	
Fußgänge	r- /Radfahre	rfurten								
Zufahrt	Bez. SG	q _{Fg} [Fg/h]	q _{Rad} [Rad/h]	Anzahl Furten	t _{W,max} [s]					QSV [-]
2	23,24	500	0	1	68					D
3	21,22	500	0	1	42					С
								Gesamtb	ewertung:	D

Knotenpunkt K6: Weißliliengasse / Epppichmauergasse - nachmittägliche Spitzenstunde

Formb	latt 3				Knotenpunk	t mit Lichtsig	nalanlage			
TOTTIL	natt 5				Berechnung	der Verkehr	squalitäten			
	Projekt	Mainz Verke	hrsgutachter	n BLU				Stadt:_		
	5.0	: K6: Weißlilie	engasse / Ep	pichmauerga	sse, Bestand	l		Datum:_	11.05.2023	
	eitabschnitt							Bearbeiter:		
Kfz-Verkeh	rsströme -	Verkehrsqua	alitäten (fah	rstreifenbez	ogen)					
Nr.	Bez.	Ströme	qj	×j	f _{A,j}	N _{GE,j}	N _{MS,j}	L _{95,j}	t _{w,j}	QSV
141.	SG		[Kfz/h]	[-]	[-]	[Kfz]	[Kfz]	[m]	[s]	[-]
21	6,6a,7	5	133	0,160	0,43	0,107	2,133	29	16,0	Α
22	6,6a,7	5	133	0,160	0,43	0,107	2,133	29	16,0	Α
31	4,5	7, 9	12	0,043	0,15	0,025	0,280	7	32,7	В
41	2,2a,3	11	359	0,341	0,54	0,299	5,317	57	12,5	Α
5 (ÖV)	41	13	10						15,0	В
Gesamt			647	0,260					14,3	
Fußgänger	- /Radfahre	rfurten								
Zufahrt	Bez. SG	q _{Fg} [Fg/h]	q _{Rad} [Rad/h]	Anzahl Furten	t _{W,max} [s]					QSV [-]
2	23,24	500	0	1	68					D
3	21,22	500	0	1	42					С
								Gesamtb	ewertung:	D

Knotenpunkt K1: Große Langgasse / Ludwigsstr. / Weißliliengasse - vormittägliche Spitzenstunde

Form	alatt 3				Knotenpunk	t mit Lichtsig	nalanlage			
Formi	olatt 3				Berechnung	der Verkehrs	squalitäten			
	Projek	t: Mainz Verke	hrsgutachter	BLU				Stadt:		
H	Knotenpunk	t: K1: Große L	anggasse / L	udwigsstr. / \	Weißliliengas	se, Planfall		Datum:	11.05.2023	
Z	eitabschnit	t: SpHAM						Bearbeiter:		
(fz-Verkel	rsströme -	Verkehrsqua	ilitäten (fahr	streifenbez	ogen)					
Nr.	Bez.	Ströme	q_j	x _j	f _{A,j}	N _{GE,j}	N _{MS,j}	L 95,j	t _{w.j}	QSV
IVI.	SG		[Kfz/h]	[-]	[-]	[Kfz]	[Kfz]	[m]	[s]	[-]
11	1-2	1, 2, 3	53	0,147	0,25	0,096	0,899	20	21,4	В
21	7-8	6	41	0,096	0,36	0,059	0,586	16	15,3	A
22	7-8	4, 5, 6	205	0,248	0,42	0,187	2,778	34	14,1	Α
31	5-6	7, 8, 9	67	0,210	0,23	0,150	1,202	26	23,4	В
41	3-4	10, 11, 12	248	0,317	0,41	0,267	3,554	41	15,4	Α
				1						
						1				
Gesamt			614	0,253					16,3	
ußgänge	r- /Radfahr	erfurten						-	-	
	Bez.	q _{Fq}	q _{Rad}	Anzahl	t _{W,max}					QSV
Zufahrt	SG	[Fg/h]	[Rad/h]	Furten	[s]					[-]
1	21-22	100	0	1	44					С
2	27-28	100	0	1	55					С
3	25-26	100	0	1	44					С
4	23-24	100	0	1	49					С
								Gesamtb	ewertung:	С

Knotenpunkt K1: Große Langgasse / Ludwigsstr. / Weißlilliengasse - mittägliche Spitzenstunde

Formi	platt 3				Knotenpunk	t mit Lichtsig	nalanlage			
Form	natt 3				Berechnung	der Verkehr	squalitäten			
	Projek	t: Mainz Verke	hrsgutachter	n BLU				Stadt:_		
H	Knotenpunk	t: K1: Große L	anggasse / L	udwigsstr. /	Weißliliengas	se, Planfall		Datum:_	11.05.2023	
7	eitabschnit	t: mittägliche S	Spitzenstunde	е				Bearbeiter:		
Kfz-Verkel	rsströme -	- Verkehrsqua	alitäten (fahr	rstreifenbez	ogen)					
Nr.	Bez.	Ströme	qj	x _j	f _{A,j}	$N_{GE,J}$	N _{MS,j}	L _{95,j}	t _{w.j}	QSV
INI.	SG		[Kfz/h]	[-]	[-]	[Kfz]	[Kfz]	[m]	[s]	[-]
11	1-2	1, 2, 3	70	0,194	0,25	0,136	1,212	24	22,2	В
21	7-8	6	31	0,072	0,36	0,043	0,438	13	15,0	Α
22	7-8	4, 5, 6	252	0,302	0,42	0,248	3,500	40	14,5	Α
31	5-6	7, 8, 9	73	0,231	0,23	0,170	1,324	28	23,8	В
41	3-4	10, 11, 12	269	0,326	0,42	0,280	3,787	43	14,8	Α
		3.5								
			-							
		1								
Gesamt			695	0,283					16,4	
ußgänge	r- /Radfahr	erfurten						-		
	Bez.	q _{Fq}	q _{Rad}	Anzahl	t _{W,max}					QSV
Zufahrt	SG	[Fg/h]	[Rad/h]	Furten	[s]					[-]
1	21-22	100	0	1	44					С
2	27-28	100	0	1	55					С
3	25-26	100	0	1	44					С
4	23-24	100	0	1	49					С
								Gesamtb	ewertung:	C

Knotenpunkt K1: Große Langgasse / Ludwigsstr. / Weißlilliengasse - nachmittägliche Spitzenstunde

Formb	latt 3				Knotenpunk	t mit Lichtsig	nalanlage			
FORME	natt 3				Berechnung	der Verkehrs	squalitäten			
	Projek	t: Mainz Verke	hrsgutachter	n BLU				Stadt:_		
K	notenpunk	t: K1: Große L	anggasse / L	udwigsstr. /	Weißliliengas	se, Planfall		Datum:_	11.05.2023	
Z	eitabschnit	t: SpHPM	-70000	,				Bearbeiter:		
Kfz-Verkeh	rsströme -	- Verkehrsqua	alitäten (fah	rstreifenbez	ogen)					
Nr.	Bez.	Ströme	qj	x_j	f _{A,j}	N _{GE,j}	N _{MS,j}	L 95,j	t _{W.j}	QSV
INI.	SG		[Kfz/h]	[-]	[-]	[Kfz]	[Kfz]	[m]	[s]	[-]
11	1-2	1, 2, 3	59	0,124	0,33	0,079	0,995	22	19,3	Α
21	7-8	6	28	0,073	0,32	0,043	0,475	14	19,2	Α
22	7-8	4, 5, 6	294	0,398	0,37	0,389	5,203	55	20,4	В
31	5-6	7, 8, 9	72	0,183	0,29	0,126	1,325	28	22,4	В
41	3-4	10, 11, 12	333	0,418	0,40	0,425	5,737	59	19,1	Α
1										
							-			
Gesamt			786	0,355					19,9	
ußgänger	- /Radfahr	erfurten								
Zufahrt	Bez. SG	q _{Fg} [Fg/h]	q _{Rad} [Rad/h]	Anzahl Furten	t _{W,max} [s]					QSV [-]
1	21-22	100	0	1	51					C
2	27-28	100	0	1	60					D
3	25-26	100	0	1	56					D
4	23-24	100	0	1	50					С
								Gesamtb	awartung:	D

Knotenpunkt K2: Umbach / Große Bleiche / Gärtnergasse - vormittägliche Spitzenstunde

Form	blatt 3				Knotenpunk	t mit Lichtsig	nalanlage			
FORM	biatt 3				Berechnung	der Verkehrs	squalitäten			
	Projekt:	Mainz Verke	hrsgutachter	n BLU				Stadt:_		
	Knotenpunkt:	K2: Umbach	/ Große Ble	iche / Gärtne	rgasse, Planf	all		Datum:_	11.05.2023	
	Zeitabschnitt:							Bearbeiter:		
Kfz-Verkel	hrsströme -	-	alitäten (fahr	streifenbez	ogen)					
Nr.	Bez. SG	Ströme	q _j [Kfz/h]	x _j [-]	f _{A,j} [-]	N _{GE,j} [Kfz]	N _{MS,j} [Kfz]	L _{95,j} [m]	t _{W.j} [s]	QSV [-]
11	3+4,4a,5	3	239	0,360	0,38	0,328	3,683	42	17,5	Α
12	4,4a,5	2	314	0,519	0,31	0,659	5,663	60	23,6	В
21	1,1a,2	5, 6	99	0,224	0,24	0,164	1,705	24	22,6	В
22	1,1a,2	4	99	0,221	0,24	0,160	1,701	24	22,5	В
31	8,8a,9	8, 9	175	0,273	0,34	0,215	2,697	34	18,1	Α
32	8,8a,9	7, 8	113	0,345	0,18	0,304	2,228	29	28,6	В
41	6,7	11, 12	171	0,521	0,17	0,661	3,689	42	33,7	В
5 (Rad)	51	13, 14	100						58,0	D
7 (Rad)	52	15, 16	100						48,0	С
Gesamt			1410	0,388					27,5	
Fußgänge	r- /Radfahre	rfurten								
Zufahrt	Bez. SG	q _{Fg} [Fg/h]	q _{Rad} [Rad/h]	Anzahl Furten	t _{W,max} [s]					QSV [-]
1	23,24	100	0	1	61					D
2	21,22	100	0	1	58					D
3	27,28	100	0	1	59					D
4	25,26	100	0	1	49					С
								Gesamth	ewertung:	D

Knotenpunkt K2: Umbach / Große Bleiche / Gärtnergasse - nachmittägliche Spitzenstunde

Form	blatt 3				Knotenpunk	t mit Lichtsig	nalanlage			
FORM	biatt 3				Berechnung	der Verkehrs	squalitäten			
	Projekt:	Mainz Verke	hrsgutachter	BLU				Stadt:_		
1	Knotenpunkt:	K2: Umbach	/ Große Blei	che / Gärtne	rgasse, Planf	all		Datum:_	11.05.2023	
- 2	Zeitabschnitt:	SpHPM						Bearbeiter:		
Kfz-Verke	hrsströme - \	Verkehrsqua	alitäten (fahr	streifenbez	ogen)					
Nr.	Bez. SG	Ströme	q _j [Kfz/h]	x _j [-]	f _{A,j} [-]	N _{GE,j} [Kfz]	N _{MS,j} [Kfz]	L _{95,j} [m]	t _{w.j} [s]	QSV [-]
11	3+4,4a,5	3	202	0,304	0,38	0,251	3,019	36	16,8	A
12	4,4a,5	2	372	0,615	0,31	1,026	7,175	73	26,5	В
21	1,1a,2	5, 6	160	0,362	0,24	0,329	2,912	35	24,7	В
22	1,1a,2	4	188	0,420	0,24	0,426	3,508	40	25,8	В
31	8,8a,9	8, 9	301	0,467	0,34	0,526	5,119	56	21,1	В
32	8,8a,9	7, 8	170	0,468	0,19	0,526	3,455	40	30,2	В
41	6,7	11, 12	198	0,631	0,16	1,089	4,678	51	39,8	С
5 (Rad)	51	13, 14	100						58,0	D
7 (Rad)	52	15, 16	100						48,0	С
							_			
Gesamt			1791	0,485					29,0	
Fußgänge	r- /Radfahre	rfurten								
Zufahrt	Bez. SG	q _{Fg} [Fg/h]	q _{Rad} [Rad/h]	Anzahl Furten	t _{W,max}					QSV [-]
1	23,24	100	0	1	61					D
2	21,22	100	0	1	58					D
3	27,28	100	0	1	59					D
4	25,26	100	0	1	49					С
								Gesamtb	ewertung.	D

Knotenpunkt K3: Große Bleiche / Bauhofstraße / Flachsmarktstraße - vormittägliche Spitzenstunde

Form	blatt 3				Knotenpunk	t mit Lichtsig	nalanlage			
FOIII	Diatt 3				Berechnung	der Verkehr	squalitäten			
	A STATE OF THE PARTY OF THE PAR		hrsgutachter					Stadt:_		
	Knotenpunkt:_		Bleiche / Baul	nofstraße / Fl	achsmarktstr	raße, Planfal			11.05.2023	
	Zeitabschnitt:							Bearbeiter:		
Kfz-Verke	hrsströme - V	erkehrsqu	alitäten (fah	streifenbez						
Nr.	Bez. SG	Ströme	q _j [Kfz/h]	x _j [-]	f _{A.j} [-]	N _{GE,j} [Kfz]	N _{MS,j} [Kfz]	L _{95,j} [m]	t _{W,j} [s]	QSV [-]
11	6-6a	3	44	0,324	0,08	0,273	1,308	21	46,0	С
12	6-6a	2	215	0,357	0,31	0,322	4,487	50	25,9	В
13	7-7a	1	30	0,150	0,10	0,099	0,784	14	38,8	С
21	3-3a-4	5, 6	147	0,521	0,15	0,660	4,043	47	43,5	С
22	3-3a-4	4	174	0,619	0,16	1,027	5,092	55	48,7	С
31	1-1a-2	8, 9	92	0,449	0,11	0,480	2,633	34	45,9	С
32	1-1a-2	7	18	0,112	0,08	0,070	0,488	10	40,0	С
41	9-10	12	51	0,180	0,15	0,123	1,238	19	35,1	С
42	9-10	10, 11	245	0,636	0,20	1,129	6,743	69	43,5	С
6 (ÖV)	Bus42	14, 13	10						53,3	E
7 (ÖV)	Bus41	15	5						53,3	Е
9 (Rad)	Rad52	16, 17	62						80,0	Е
11 (Rad)	Rad51	18, 19	37						74,0	E
Gesamt			1130	0.480					43,8	
	r- /Radfahrer	furton	1130	0,460					43,0	
rusgange	Bez.	q _{Fa}	q _{Rad}	Anzahl	t _{W,max}		T			QSV
Zufahrt	SG	[Fg/h]	[Rad/h]	Furten	[s]					[-]
1	F27-28	100	0	1	80					E
2	F23-24	100	0	1	73					E
2	F25-26	100	0	1	80					Е
3	F21-22	100	0	1	80					Е
4	F29-30	100	0	1	73					Е
4	F31-32	100	0	1	76					Е
2 F	23-24+F25-26	3 100	0	2	80					Е
4 F	29-30+F31-32	2 100	0	2	76					Е
								Gesamtb	ewertung:	E

Knotenpunkt K3: Große Bleiche / Bauhofstraße / Flachsmarktstraße - nachmittägliche Spitzenstunde

Form	blatt 3				Knotenpunk	t mit Lichtsig	nalanlage			
Form	Diatt 3				Berechnung	der Verkehrs	squalitäten			
			hrsgutachter					Stadt:_		
	Knotenpunkt: <u>I</u>		lleiche / Baul	nofstraße / Fl	achsmarktstr	aße, Planfall		_	11.05.2023	
	Zeitabschnitt: S	-						Bearbeiter:		
Kfz-Verke	hrsströme - V		alitäten (fahi	streifenbez	ogen)					
Nr.	Bez. SG	Ströme	q _j [Kfz/h]	x _j [-]	f _{A,j} [-]	N _{GE,j} [Kfz]	N _{MS,j} [Kfz]	L _{95,j} [m]	t _{W,j} [s]	QSV [-]
11	6-6a	3	42	0,311	0,08	0,258	1,245	20	45,6	С
12	6-6a	2	228	0,377	0,31	0,354	4,804	53	26,3	В
13	7-7a	1	31	0,155	0,10	0,103	0,811	14	38,9	С
21	3-3a-4	5, 6	188	0,671	0,15	1,329	5,768	63	53,1	D
22	3-3a-4	4	234	0,833	0,16	3,580	9,256	89	82,7	Е
31	1-1a-2	8, 9	172	0,843	0,11	3,514	7,733	80	101,3	E
32	1-1a-2	7	23	0,143	0,08	0,093	0,628	12	40,6	С
41	9-10	12	110	0,385	0,15	0,364	2,848	34	39,2	С
42	9-10	10, 11	243	0,633	0,20	1,109	6,672	69	43,4	С
6 (ÖV)	Bus42	14, 13	10						53,3	E
7 (ÖV)	Bus41	15	5						53,3	E
9 (Rad)	Rad52	16, 17	70						80,0	Е
11 (Rad)	Rad51	18, 19	63						74,0	E
Gesamt			1419	0,605					58,3	
Fußgänge	r- /Radfahrerf	furten								
7. 6-1-1	Bez.	q _{Fg}	q _{Rad}	Anzahl	t _{W,max}					QSV
Zufahrt	SG	[Fg/h]	[Rad/h]	Furten	[s]					[-]
1	F27-28	100	0	1	80					E
2	F23-24	100	0	1	73					E
2	F25-26	100	0	1	80					E
3	F21-22	100	0	1	80					Е
4	F29-30	100	0	1	73					Е
4	F31-32	100	0	1	76					Е
2 F	23-24+F25-26	100	0	2	80					Е
4 F	29-30+F31-32	100	0	2	76					E
								Gesamth	ewertung:	E

Knotenpunkt K3: Große Bleiche / Bauhofstraße / Flachsmarktstraße - nachmittägliche Spitzenstunde angepasst

Form	blatt 3				Knotenpunk	t mit Lichtsig	ınalanlage			
FOIII	ibiatt 3				Berechnung	der Verkehr	squalitäten			
			hrsgutachter				_	Stadt:_		
	Knotenpunkt: I		lleiche / Baul	nofstraße / Fl	achsmarktstr	aße, Planfall		_	11.05.2023	
	Zeitabschnitt: S	-						Bearbeiter:		
Kfz-Verke	hrsströme - V	erkehrsqua	alitäten (fahr	streifenbez	ogen)					
Nr.	Bez. SG	Ströme	q _j [Kfz/h]	x _j [-]	f _{A,j} [-]	N _{GE,j} [Kfz]	N _{MS,J} [Kfz]	L _{95,j} [m]	t _{W.j} [s]	QSV [-]
11	6-6a	3	42	0,290	0,09	0,232	1,212	20	44,0	С
12	6-6a	2	228	0,377	0,31	0,354	4,804	53	26,3	В
13	7-7a	1	31	0,155	0,10	0,103	0,811	14	38,9	С
21	3-3a-4	5, 6	188	0,625	0,16	1,057	5,436	60	47,7	С
22	3-3a-4	4	234	0,777	0,17	2,470	8,071	79	65,4	D
31	1-1a-2	8, 9	172	0,708	0,13	1,595	5,714	63	61,1	D
32	1-1a-2	7	23	0,128	0,09	0,082	0,612	12	39,4	С
41	9-10	12	110	0,495	0,12	0,587	3,168	37	46,9	С
42	9-10	10, 11	243	0,762	0,17	2,248	8,047	80	61,2	D
6 (ÖV)	Bus42	14, 13	10						53,3	E
7 (ÖV)	Bus41	15	5						53,3	Е
9 (Rad)	Rad52	16, 17	70						81,0	Е
11 (Rad)	Rad51	18, 19	63						76,0	E
Gesamt			1419	0,603					53,6	
Fußgänge	er- /Radfahrerf	furten								
Zufahrt	Bez.	q _{Fg}	q _{Rad}	Anzahl	t _{W,max}					QSV
Zulanrı	SG	[Fg/h]	[Rad/h]	Furten	[s]					[-]
1	F27-28	100	0	1	83					E
2	F23-24	100	0	1	73					E
2	F25-26	100	0	1	80					E
3	F21-22	100	0	1	80					Е
4	F29-30	100	0	1	73					E
4	F31-32	100	0	1	76					Е
2	23-24+F25-26	100	0	2	80					Е
4 1	29-30+F31-32	100	0	2	76					E
								Gesamth	ewertung:	E

Knotenpunkt K4: Rheinstraße / Holzhofstraße - vormittägliche Spitzenstunde

Form	blatt 3				Knotenpunk	t mit Lichtsig	nalanlage			
Folia	ibiatt 5				Berechnung	der Verkehr	squalitäten			
	Projekt: N	Mainz Verke	hrsgutachter	BLU				Stadt:_		
	Knotenpunkt: k	K4: Rheinstr	aße / Holzho	fstraße, Plan	fall			Datum:_	11.05.2023	
	Zeitabschnitt: S	SpHAM						Bearbeiter:		
Kfz-Verke	hrsströme - V	erkehrsqua	litäten (fahr	streifenbezo	ogen)					
Nr.	Bez.	Ströme	qj	x_j	f _{A,j}	$N_{GE,j}$	N _{MS,j}	L _{95,j}	t _{W.j}	QSV
131.	SG		[Kfz/h]	[-]	[-]	[Kfz]	[Kfz]	[m]	[s]	[-]
11	KRa1+2b-2-2	3	153	0,282	0,30	0,225	3,136	38	25,3	В
12+13	2b-2-2	1	366	0,627	0,26	1,087	9,180	87	36,2	С
12	2b-2-2	1	183	0,596	0,16	0,924	5,183	55	46,2	С
13	2b-2-2	1	183	0,596	0,16	0,924	5,183	55	46,2	С
21	11-11a	5	460	0,735	0,32	1,994	12,206	112	38,5	С
22	11-11a	5	460	0,735	0,32	1,994	12,206	112	38,5	С
23	12-12a	4	307	0,791	0,20	2,814	10,108	96	60,3	D
41	3-3a-4	11, 12	323	0,541	0,31	0,727	7,397	73	29,9	В
42	3-3a-4	11	386	0,542	0,37	0,732	8,360	82	26,2	В
		-								
Gesamt			2455	0,637					38,5	
Fußgänge	er- /Radfahrerf	urten								
Zufahrt	Bez.	q _{Fg}	Q Rad	Anzahl	t _{W,max}					QSV
Zulailit	SG	[Fg/h]	[Rad/h]	Furten	[s]					[-]
1	F21-22	100	0	1	80					E
2	F27-28	100	0	1	79					E
	-							Gesamth	ewertung:	Е

Knotenpunkt K4: Rheinstraße / Holzhofstraße - nachmittägliche Spitzenstunde

Form	blatt 3				Knotenpunk	t mit Lichtsig	nalanlage			
Form	ibiatt 3				Berechnung	der Verkehr	squalitäten			
	Projekt:_	Mainz Verke	hrsgutachter	n BLU				Stadt:_		
	Knotenpunkt:_	K4: Rheinstr	aße / Holzho	ofstraße, Plan	fall			Datum:_	11.05.2023	
	Zeitabschnitt:							Bearbeiter:		
Kfz-Verke	hrsströme - V	/erkehrsqua	alitäten (fahr	streifenbezo	ogen)					
Nr.	Bez.	Ströme	q_j	x_j	f _{A,j}	$N_{GE,j}$	N _{MS,j}	L 95,j	t _{W,j}	QSV
	SG		[Kfz/h]	[-]	[-]	[Kfz]	[Kfz]	[m]	[s]	[-]
11	KRa1+2b-2-2	3	331	0,849	0,22	4,424	13,243	120	78,3	E
12+13	2b-2-2	1	375	0,716	0,24	1,755	11,328	104	47,1	С
12	2b-2-2	1	187	0,678	0,14	1,371	6,306	64	58,7	D
13	2b-2-2	1	188	0,681	0,14	1,397	6,361	65	59,1	D
21	11-11a	5	380	0,529	0,37	0,689	8,955	87	28,1	В
22	11-11a	5	380	0,529	0,37	0,689	8,955	87	28,1	В
23	12-12a	4	291	1,070	0,14	16,724	24,808	205	264,4	F.
41	3-3a-4	11, 12	591	0,723	0,43	1,875	15,482	135	32,0	В
42	3-3a-4	11	661	0,724	0,47	1,889	16,641	145	28,7	В
Gesamt			3009	0,716					61,2	
Fußgänge	er- /Radfahrer	furten								
Zufahrt	Bez.	q _{Fg}	q _{Rad}	Anzahl	t _{W,max}					QSV
Zufahrt	SG	[Fg/h]	[Rad/h]	Furten	[s]					[-]
1	F21-22	100	0	1	92					F
2	F27-28	100	0	1	89					F
		-						Gesamth	ewertung:	F

^{*:} Der kurze Aufstellstreifen kann den Verkehr nicht komplett aufnehmen. Die Auswirkungen auf den angrenzenden Fahrstreifen können nach HBS2015 nicht berücksichtigt werden.

Knotenpunkt K4: Rheinstraße / Holzhofstraße - nachmittägliche Spitzenstunde angepasst

Form	blatt 3				Knotenpunk	t mit Lichtsig	nalanlage			
Folia	ibiatt 5				Berechnung	der Verkehr	squalitäten			
	Projekt: N	Mainz Verke	hrsgutachter	BLU				Stadt:_		
	Knotenpunkt: <u>k</u>	K4: Rheinstr	aße / Holzho	fstraße, Plan	fall			Datum:_	11.05.2023	
	Zeitabschnitt: \$	SpHPM						Bearbeiter:		
Kfz-Verke	hrsströme - V	erkehrsqua	ilitäten (fahr	streifenbez	ogen)					
Nr.	Bez.	Ströme	qj	\mathbf{x}_{j}	f _{A,j}	$N_{GE,j}$	N _{MS,j}	L _{95,j}	t _{W.j}	QSV
	SG		[Kfz/h]	[-]	[-]	[Kfz]	[Kfz]	[m]	[s]	[-]
11	KRa1+2b-2-2	3	331	0,779	0,24	2,605	11,202	104	57,6	D
12+13	2b-2-2	1	375	0,716	0,24	1,755	11,328	104	47,1	С
12	2b-2-2	1	187	0,678	0,14	1,371	6,306	64	58,7	D
13	2b-2-2	1	188	0,681	0,14	1,397	6,361	65	59,1	D
21	11-11a	5	380	0,529	0,37	0,689	8,955	87	28,1	В
22	11-11a	5	380	0,529	0,37	0,689	8,955	87	28,1	В
23	12-12a	4	291	0,786	0,19	2,703	10,400	98	64,9	D
41	3-3a-4	11, 12	589	0,776	0,40	2,691	16,949	146	39,0	С
42	3-3a-4	11	663	0,775	0,44	2,701	18,355	158	35,2	С
Gesamt			3009	0,703					42,4	
Fußgänge	er- /Radfahrerf	furten								
Zufahrt	Bez.	q _{Fg}	Q Rad	Anzahl	t _{W,max}					QSV
	SG	[Fg/h]	[Rad/h]	Furten	[s]	-		-		[-]
1	F21-22	100	0	1	92					F
2	F27-28	100	0	1	89					F
						5		Gesamtb	ewertung:	F

Knotenpunkt K5: Holzhofstraße / Windmühlenstraße - vormittägliche Spitzenstunde

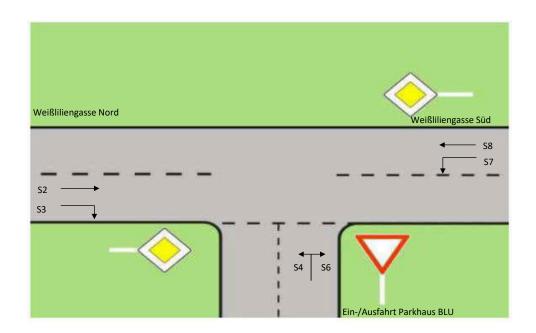
Form	blatt 3				Knotenpunk	t mit Lichtsig	nalanlage			
101111	biatt 5				Berechnung	der Verkehr	squalitäten			
	Projekt:_	Mainz Verke	hrsgutachter	BLU				Stadt:_		
	Knotenpunkt:_		straße / Wind	mühlenstraß	e, Planfall				11.05.2023	
	Zeitabschnitt:							Bearbeiter:		
Kfz-Verke	hrsströme - \		alitäten (fahr	streifenbez	ogen)					
Nr.	Bez. SG	Ströme	q _j [Kfz/h]	x _j [-]	f _{A,j} [-]	N _{GE,j} [Kfz]	N _{MS,j} [Kfz]	L _{95,j} [m]	t _{W.j} [s]	QSV [-]
11	3-3a-4+K8	3	483	0,648	0,41	1,219	8,741	83	22,3	В
12	3-3a-4	1	197	0,370	0,29	0,341	3,387	41	22,1	В
21	1-1a-2	5	347	0,414	0,43	0,416	5,102	55	15,7	Α
22	1-1a-2	4	223	0,488	0,25	0,574	4,271	48	26,8	В
41	5-6	12	83	0,241	0,19	0,180	1,550	24	26,0	В
42	5-6	11	167	0,379	0,23	0,355	3,098	38	25,7	В
Gesamt			1500	0,481					22,0	
Fußgänge	r- /Radfahrer	furten								
Zufahrt	Bez. SG	q _{Fg} [Fg/h]	q _{Rad} [Rad/h]	Anzahl Furten	t _{W,max} [s]					QSV [-]
1	F23-24	100	0	1	61					D
2	F21-22	100	0	1	61					D
4	F25-26	100	0	1	60					D
								Gesamtb	ewertung:	D

Knotenpunkt K5: Holzhofstraße / Windmühlenstraße - nachmittägliche Spitzenstunde

Form	blatt 3				Knotenpunk	t mit Lichtsig	nalanlage			
101111	biatt 5				Berechnung	der Verkehr	squalitäten			
	Projekt:_	Mainz Verke	hrsgutachter	BLU				Stadt:_		
	Knotenpunkt:_		straße / Wind	mühlenstraß	e, Planfall				11.05.2023	
	Zeitabschnitt:							Bearbeiter:		
Kfz-Verke	hrsströme - \		alitäten (fahr	streifenbezo	ogen)					
Nr.	Bez. SG	Ströme	q _j [Kfz/h]	(-)	f _{A,j} [-]	N _{GE,j} [Kfz]	N _{MS,j} [Kfz]	L _{95,j} [m]	t _{W,j} [s]	QSV [-]
11	3-3a-4+K8	3	351	0,465	0,43	0,521	6,109	63	19,0	Α
12	3-3a-4	1	136	0,428	0,17	0,440	3,140	39	34,5	В
21	1-1a-2	5	236	0,211	0,57	0,151	2,687	34	8,7	Α
22	1-1a-2	4	356	0,565	0,34	0,812	7,252	72	26,0	В
41	5-6	12	177	0,424	0,22	0,435	3,811	44	30,4	В
42	5-6	11	278	0,548	0,26	0,750	6,073	64	30,7	В
Gesamt			1534	0,456					23,9	
Fußgänge	r- /Radfahrer	furten				100		12.		
Zufahrt	Bez. SG	q _{Fg} [Fg/h]	q _{Rad} [Rad/h]	Anzahl Furten	t _{W,max}					QSV [-]
1	F23-24	100	0	1	70					D
2	F21-22	100	0	1	69	9				D
4	F25-26	100	0	1	70					D
								Gesamth	ewertung:	D

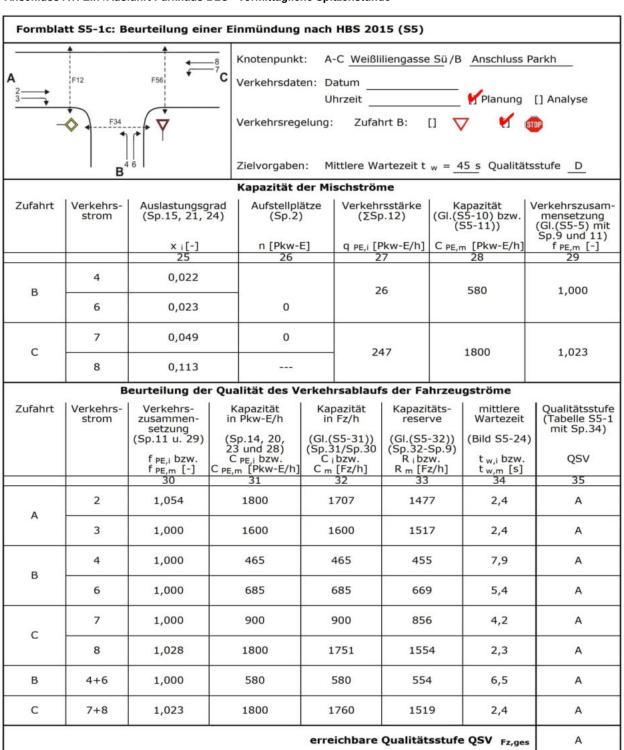
Knotenpunkt K6: Weißlilliengasse / Eppichmauergasse - vormittägliche Spitzenstunde

Formblatt 3		Knotenpunkt mit Lichtsignalanlage										
FOITIL	natt 5				Berechnung	der Verkehrs	squalitäten					
	Projekt	Mainz Verke	hrsgutachter	n BLU				Stadt:_				
		K6: Weißlilie	ngasse / Ep	pichmauerga	sse, Planfall			Datum:_	11.05.2023			
	eitabschnitt							Bearbeiter:				
Kfz-Verkeh	rsströme -	Verkehrsqua	litäten (fah	streifenbez	ogen)							
Nr.	Bez. SG	Ströme	q _j [Kfz/h]	x _j [-]	f _{A,j} [-]	N _{GE,j} [Kfz]	N _{MS,j} [Kfz]	L _{95,j} [m]	t _{W,j} [s]	QSV [-]		
21	6,6a,7	5	167	0,203	0,43	0,144	2,738	35	16,5	A		
22+21	6,6a,7	5	335	0,332	0,48	0,287	5,428	59	15,3	Α		
22	6,6a,7	5	168	0,205	0,43	0,145	2,756	35	16,5	Α		
31	4,5	7, 9	19	0,090	0,14	0,055	0,470	12	34,9	В		
41	2,2a,3	11	191	0,183	0,54	0,126	2,541	33	10,8	А		
5 (ÖV)	41	13	10						15,0	В		
Gesamt	- /Radfahre	-funtan	555	0,193					15,1			
usganger				Anzahl						0617		
Zufahrt	Bez. SG	q _{Fg} [Fg/h]	q _{Rad} [Rad/h]	Furten	t _{W,max} [s]					QSV [-]		
2	23,24	500	0	1	68					D		
3	21,22	500	0	1	42					С		
								Gesamth	ewertung:	D		

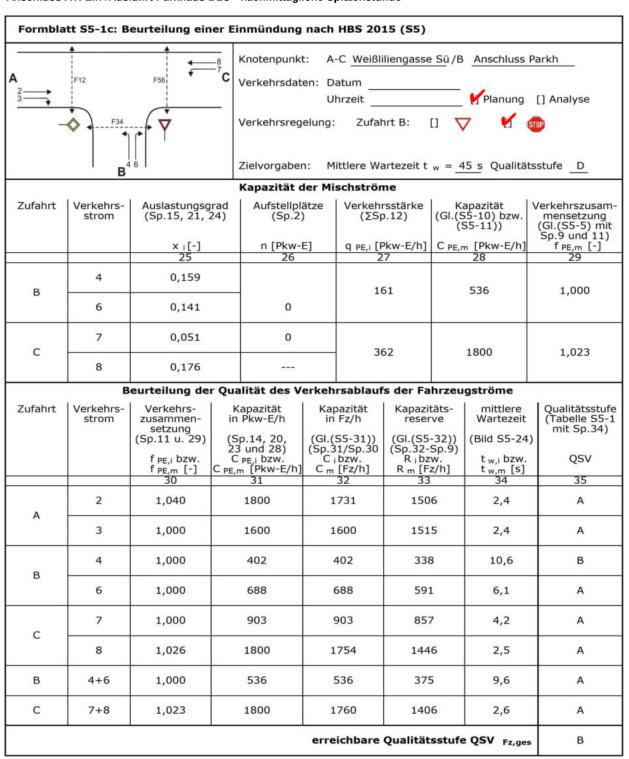


Knotenpunkt K6: Weißliliengasse / Eppichmauergasse - nachmittägliche Spitzenstunde

Formblatt 3		Knotenpunkt mit Lichtsignalanlage									
FOITIL	natt 5				Berechnung	der Verkehrs	squalitäten				
	Projekt	Mainz Verke	hrsgutachter	n BLU				Stadt:_			
H	Cnotenpunkt	K6: Weißlilie	ngasse / Ep	pichmauerga	sse, Planfall			Datum:_	11.05.2023		
Z	eitabschnitt	SpHPM						Bearbeiter:			
Kfz-Verkel	rsströme -	Verkehrsqua	alitäten (fah	rstreifenbez	ogen)						
Nr.	Bez.	Ströme	qj	x_j	f _{A,j}	$N_{GE,j}$	N _{MS,j}	L _{95,j}	t _{W.j}	QSV	
	SG		[Kfz/h]	[-]	[-]	[Kfz]	[Kfz]	[m]	[s]	[-]	
21	6,6a,7	5	149	0,180	0,43	0,123	2,413	32	16,2	Α	
22+21	6,6a,7	5	299	0,293	0,48	0,238	4,729	53	14,8	Α	
22	6,6a,7	5	150	0,181	0,43	0,124	2,431	32	16,2	Α	
31	4,5	7, 9	18	0,089	0,14	0,054	0,447	12	34,9	В	
41	2,2a,3	11	378	0,358	0,54	0,325	5,675	60	12,7	Α	
5 (ÖV)	41	13	10						15,0	В	
					1						
Gesamt			705	0,275					14,8		
Fußgängei	- /Radfahre	rfurten									
Zufahrt	Bez. SG	q _{Fg} [Fg/h]	q _{Rad} [Rad/h]	Anzahl Furten	t _{W,max} [s]					QSV [-]	
2	23,24	500	0	1	68					D	
3	21,22	500	0	1	42					С	
								Gesamtb	ewertung:	D	



Anschluss A1: Ein-/Ausfahrt Parkhaus BLU



Anschluss A1: Ein-/Ausfahrt Parkhaus BLU - vormittägliche Spitzenstunde

Anschluss A1: Ein-/Ausfahrt Parkhaus BLU - nachmittägliche Spitzenstunde

